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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorization models

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorization models

for dimensionality reduction (coding, low-dimensional embedding)

≈
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Matrix factorization models

for unmixing (source separation, latent topic discovery)

≈
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Matrix factorization models

for interpolation (collaborative filtering, image inpainting)

≈
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Matrix factorization models

I simple generative & interpretable models, popular in unsupervised settings.

I used in many fields for a long time:
I Principal component analysis PCA (Pearson, 1901)
I Factor analysis (Spearman, 1904)
I Latent semantic analysis LSA (Deerwester et al., 1988)
I Independent component analysis ICA (Comon, 1994)
I Nonnegative matrix factorization NMF (Lee & Seung, 1999)
I Latent Dirichlet allocation LDA (Blei et al., 2003)
I Sparse dictionary learning, e.g., K-SVD (Aharon et al., 2006)

I active topics:
I design of nonconvex optimization algorithms with proven convergence
I landscape analysis, search for global optima
I conditions for identifiability
I rank selection
I probabilistic models & statistical approaches (e.g., integer-valued or binary data)
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Nonnegative matrix factorization
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I data V and factors W, H have nonnegative entries.

I nonnegativity of W ensures interpretability of the dictionary, because patterns
wk and samples vn belong to the same space.

I nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by (Paatero and Tapper, 1994), landmark Nature paper by (Lee and Seung, 1999)
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49 images among 2429 from MIT’s CBCL face dataset
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PCA dictionary with K = 25

red pixels indicate negative values
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NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)
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NMF for latent semantic analysis
(Lee and Seung, 1999; Hofmann, 1999)
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.

vn W hn

reproduced from (Lee and Seung, 1999)
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NMF for audio spectral unmixing
(Smaragdis and Brown, 2003)

11 

Non-Negative Matrix Factorization 

! All factors are positive-valued:  
! Resulting reconstruction is additive 
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reproduced from (Smaragdis, 2013)
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NMF for hyperspectral unmixing
(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

2

Fig. 1. Hyperspectral imaging concept.

I. INTRODUCTION

Hyperspectral cameras [1]–[11] contribute significantly to earth observation and remote sensing [12],

[13]. Their potential motivates the development of small, commercial, high spatial and spectral resolution

instruments. They have also been used in food safety [14]–[17], pharmaceutical process monitoring and

quality control [18]–[22], and biomedical, industrial, and biometric, and forensic applications [23]–[27].

HSCs can be built to function in many regions of the electro-magnetic spectrum. The focus here is

on those covering the visible, near-infrared, and shortwave infrared spectral bands (in the range 0.3µm

to 2.5µm [5]). Disregarding atmospheric effects, the signal recorded by an HSC at a pixel is a mixture

of light scattered by substances located in the field of view [3]. Fig. 1 illustrates the measured data.

They are organized into planes forming a data cube. Each plane corresponds to radiance acquired over a

reproduced from (Bioucas-Dias et al., 2012)
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NMF as a constrained minimization problem

Minimize a measure of fit between V and WH, subject to nonnegativity:

min
W,H≥0

D(V|WH) =
∑
fn

d([V]fn|[WH]fn),

where d(x |y) is a scalar cost function, e.g.,

I squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)

I Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)

I Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)

I α-divergence (Cichocki et al., 2008)

I β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

I Bregman divergences (Dhillon and Sra, 2005)

I and more in (Yang and Oja, 2011)

Regularization terms often added to D(V|WH) for sparsity, smoothness, etc.
Nonconvex problem.
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Probabilistic models

I Let V ∼ p(V|WH) such that
I E[V|WH] = WH
I p(V|WH) =

∏
fn p(vfn|[WH]fn)

I then the following correspondences apply with

D(V|WH) = − log p(V|WH) + cst

data support distribution/noise divergence examples

real-valued additive Gaussian quadratic loss many

integer multinomial? weighted KL word counts
integer Poisson generalized KL photon counts

nonnegative
multiplicative
Gamma

Itakura-Saito spectrogram

generally
nonnegative

Tweedie β-divergence
generalizes
above models

?conditional independence over f does not apply
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The β-divergence

A popular measure of fit in NMF (Basu et al., 1998; Cichocki and Amari, 2010)

dβ(x |y)
def
=


1

β (β−1)

(
xβ + (β − 1) yβ − β x yβ−1

)
β ∈ R\{0, 1}

x log x
y + (y − x) β = 1

x
y − log x

y − 1 β = 0

Special cases:

I squared Euclidean distance / quadratic loss (β = 2)

I generalized Kullback-Leibler (KL) divergence (β = 1)

I Itakura-Saito (IS) divergence (β = 0)

Properties:

I Homogeneity: dβ(λx |λy) = λβdβ(x |y)

I dβ(x |y) is a convex function of y for 1 ≤ β ≤ 2

I Bregman divergence
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The β-divergence
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A common NMF algorithm design: alternating methods

I Block-coordinate update of H given W(i−1) and W given H(i).

I Updates of W and H equivalent by transposition:

V ≈WH⇔ VT ≈ HTWT

I Objective function separable in the columns of H or the rows of W:

D(V|WH) =
∑
n

D(vn|Whn)

I Essentially left with nonnegative linear regression:

min
h≥0

C (h)
def
= D(v|Wh)

Numerous references in the image restoration literature, e.g., (Richardson, 1972;

Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)

Block-descent algorithm, nonconvex problem, initialization is an issue.
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Majorization-minimization (MM)

Build G (h|h̃) such that G (h|h̃) ≥ C (h) and G (h̃|h̃) = C (h̃).
Optimize (iteratively) G (h|h̃) instead of C (h).
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Majorization-minimization (MM)

I Finding a good & workable local majorization is the crucial point.
I Treating convex and concave terms separately with Jensen and tangent

inequalities usually works. E.g.:

CIS(h) =

[∑
f

vf∑
k wfkhk

]
+

[∑
f

log

(∑
k

wfkhk

)]
+ cst

I In most cases, leads to nonnegativity-preserving multiplicative algorithms:

hk = h̃k

(
∇−hkC (h̃)

∇+
hk
C (h̃)

)γ

I ∇hkC(h) = ∇+
hk
C(h)−∇−

hk
C(h) and the two summands are nonnegative.

I if ∇hkC(h̃) > 0, ratio of summands < 1 and hk decreases.
I γ is a divergence-specific scalar exponent.

I Details in (Nakano et al., 2010; Févotte and Idier, 2011; Yang and Oja, 2011)

31/56



Majorization-minimization (MM)

I Finding a good & workable local majorization is the crucial point.
I Treating convex and concave terms separately with Jensen and tangent

inequalities usually works. E.g.:

CIS(h) =

[∑
f

vf∑
k wfkhk

]
+

[∑
f

log

(∑
k

wfkhk

)]
+ cst

I In most cases, leads to nonnegativity-preserving multiplicative algorithms:

hk = h̃k

(
∇−hkC (h̃)

∇+
hk
C (h̃)

)γ

I ∇hkC(h) = ∇+
hk
C(h)−∇−

hk
C(h) and the two summands are nonnegative.

I if ∇hkC(h̃) > 0, ratio of summands < 1 and hk decreases.
I γ is a divergence-specific scalar exponent.

I Details in (Nakano et al., 2010; Févotte and Idier, 2011; Yang and Oja, 2011)

31/56



Example: derivation for the Itakura-Saito divergence

I IS divergence (β = 0)

dIS(x |y) =
x

y
− log

x

y
− 1

I Nonnegative linear regression with the IS divergence

min
h≥0

CIS(h) =
∑
f

dIS(vf |[Wh]f )

=

[∑
f

vf∑
k wfkhk

]
︸ ︷︷ ︸

C1(h) (convex)

+

[∑
f

log

(∑
k

wfkhk

)]
︸ ︷︷ ︸

C2(h) (concave)

+cst
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Example: derivation for the Itakura-Saito divergence

I Majorization of C1(h) with Jensen’s inequality.
Let f (x) be a convex function and λ ∈ RK

+ with
∑

k λk = 1. Then:

f
(∑

k
λkhk

)
≤
∑

k
λk f (hk).

I Let h̃ ∈ RK
+ be the current estimate, ṽ = Wh̃ be the current approximation and

λfk =
wfk h̃k
ṽf

=
wfk h̃k∑
j wfj h̃j

(
note that

∑
k
λfk = 1

)
.

I Then, by convexity of f (x) = x−1, we may write:

CIS(h) =
∑

f
vf
(∑

k
wfkhk

)−1

=
∑

f
vf

(∑
k
λfk

wfkhk
λfk

)−1

≤
∑

fk
vf

λ2
fk

wfkhk
=
∑

fk
wfk

vf
ṽ2
f

h̃2
k

hk
= G1(h|h̃).
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Example: derivation for the Itakura-Saito divergence

I Majorization of C2(h) with the tangent inequality.
Let g(h) be a concave function then:

g(h) ≤ g(h̃) +∇g(h̃)>(h− h̃) =
∑
k

[∇g(h̃)]khk + cst.

I Given C2(h) =
∑

f log (
∑

k wfkhk), we have:

[∇C2(h̃)]k = ∇hkC2(h̃) =
∑

f

wfk

ṽf
.

I Finally, we may majorize C2(h) with:

G2(h|h̃) =
∑

fk

wfk

ṽf
hk + cst.
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Example: derivation for the Itakura-Saito divergence

I In the end, we may majorize CIS(h) with:

G (h|h̃) = G1(h|h̃) + G2(h|h̃) + cst

=
∑
fk

wfk

[
vf
ṽ2
f

h̃2
k

hk
+

1

ṽf
hk

]
+ cst.

I Smooth, convex and separable majorizer. Easily minimized by cancelling its
gradient, leading to the MM-based multiplicative update

hk = h̃k

(∑
f wfkvf [Wh̃]−2

f∑
f wfk [Wh̃]−1

f

) 1
2

.

I Algorithm known from (Cao et al., 1999). The 1
2 exponent can be dropped using

majorization-equalization (Févotte and Idier, 2011).
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The multiplicative updates (MU) for NMF with β-divergence

I Alternating updates of W and H.

I In standard practice, only one MM update applied to W and H, rather than
fully solving subproblems minW≥0 D(V|WH) and minH D(V|WH).

I Leads to a valid descent algorithm with multiplicative updates given by:

H←H.

(
WT [(WH).(β−2).V]

WT [WH].(β−1)

)γ(β)

W←W.

(
[(WH).(β−2).V] HT

[WH].(β−1) HT

)γ(β)

I Very straightforward implementation, no hyperparameters!

I Nonnegativity is automatically preserved given positive initializations.

I Linear complexity per iteration.

I In practice, minimizing D(V + ε|WH + ε) prevents from numerical issues.
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Convergence of the iterates

I By design, we have convergence of the objective values C (W,H) = D(V|WH).

I What about the iterates ? Only partial answers so far.

I A theoretical challenge arises from the lack of coercivity of the objective:
‖W‖ or ‖H‖ → ∞ 6⇒ C (W,H)→∞.

I Due to the scale indeterminacy: C (WΛ−1,ΛH) = C (W,H), with Λ→ 0.

Possible remedies (modified problems)

1) Impose W ≥ ε, H ≥ ε (Takahashi et al., 2018; Hien and Gillis, 2021).

2) Slightly change the objective function to ensure coercivity (Zhao and Tan, 2018):

C (W,H) = D(V|WH) + ε‖W‖1 + ε‖H‖1

MM results in adding ε at the denominator of the multiplicative updates.
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Selecting β by matrix completion
(Févotte and Dobigeon, 2015)

I Data: two unfolded hyperspectral cubes, F ∼ 150, N = 50× 50
I Aviris instrument over Moffett Field (CA), lake, soil & vegetation.
I Hyspex/Madonna instrument over Villelongue (FR), forested area.

I a percentage of the pixels is randomly removed.

I W and H estimated from observed pixels (simple modification of MU).

I missing pixels are reconstructed from V̂ = WH.

I K = 3 (∼ ground truth) and various values of β.

I evaluation using the average spectral angle mapper (aSAM):

aSAM(V) =
1

N

N∑
n=1

acos

(
〈vn, v̂n〉
‖vn‖‖v̂n‖

)
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Selecting β by matrix completion
(Févotte and Dobigeon, 2015)
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Recommended value β ≈ 1.5 for these datasets
(compromise between Poisson and additive Gaussian noise).
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Other alternating optimization methods

I MM-based multiplicative updates are a simple and competitive choice for many
divergences (beyond β-divergences).

I More efficient options have been proposed for specific measures of fit, see
books by Cichocki et al. (2009); Gillis (2020)

Quadratic loss (selection)

I Active-set methods (Kim and Park, 2011)

I Hierarchical alternating LS (Cichocki et al., 2007; Gillis and Glineur, 2012)

I Proximal gradient descent (Lin, 2007; Guan et al., 2012; Bolte et al., 2014)

I ADMM (Sun and Févotte, 2014; Huang et al., 2016)

Kullback-Leibler divergence (selection)

I Second-order coordinate descent methods (Hsieh and Dhillon, 2011)

I Hybrid Newton-type algorithms with line search and MU (Hien and Gillis, 2021)
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Non-alternating methods (joint optimization)

I Optimize C (W,H) = D(V|W,H) jointly in W and H.

I Exciting line of research, driven by recent results in non-convex optimization.
Possibly better optima and lower complexity.

1) Proximal gradient algorithms with global smoothness constant (∼Lipschitz) for
the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).

2) Joint MM algorithm for the β-divergence (Marmin, Goulart, and Févotte, 2021):
I Global majorizer constructed using Jensen and tangent inequalities:

C(W,H) ≤ G(W,H|W̃, H̃)

C(W̃, H̃) = G(W̃, H̃|W̃, H̃)

I Global minimizer of G not available in closed form. G non-convex.
I Alternate minimization of G leads to closed-form updates and new multiplicative

rules. Important computational savings for some values of β (see paper).

3) Second-order method for β-NMF based on efficient Hessian approximations and
tricks to maintain semidefinite positivity (Vandecappelle et al., 2020).
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Large-scale NMF

Online NMF

I Large number of samples N >> F .

I Update W as samples vn become available.

I Vectors hn act as latent variables, minimize

C (W) =
N∑

n=1

min
hn≥0

D(vn|Whn)

I Solved with online MM (Lefèvre et al., 2011b; Mairal, 2015; Zhao et al., 2017)

Stochastic NMF

I Large F and N.

I Online NMF with stochastic subsampling:

min
hn≥0

D(vn[I]|W[I, :]hn)

where I is a random set of indices (Mensch et al., 2018).
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Regularized NMF

I Induce prior information or desired structure on H (or W) using penalty terms:

C (W,H) = D(V|WH) + S(H)

I MM algorithms are easily adapted to that setting:

D(V|WH) +S(H) ≤ G (H|H̃,W) +S(H)

I Only the minimization step is changed.

I May however become intractable; sometimes S(H) needs to be majorized itself.

I Similar to adjusting the proximal operator in proximal gradient descent.
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I May however become intractable; sometimes S(H) needs to be majorized itself.

I Similar to adjusting the proximal operator in proximal gradient descent.
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Sparsity

I Promote zeros in H (or W), e.g,

S(H) = ‖H‖1 =
∑

kn
hkn, S(H) =

∑
kn

log(hkn + ε)

I Possibly with some group structure, e.g., cancel some rows of H (see Part II).

I Vast literature! Seminal paper by Hoyer (2004).

I Need to control ‖W‖ to avoid degenerate solutions ‖W‖ → ∞, ‖H‖ → 0.

I Because C(WΛ−1,ΛH) = D(V|WH) + S(ΛH), S(·) can be made arbitrary small.

I A common approach:

min
W,H≥0

C (W,H) s.t. ∀k , ‖wk‖ = 1

I Change of variable (Eggert and Körner, 2004; Lefèvre et al., 2011a; Le Roux et al., 2015)
I Lagrangian method (Leplat et al., 2021)
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Smoothness

Impose temporal or spatial regularization, e.g.,

S(H) =
∑

kn
d(hkn|hk(n−1))

I Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)

I Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

≈

correlated data

dynamical model
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Smoothness

Impose temporal or spatial regularization, e.g.,

S(H) =
∑

kn
d(hkn|hk(n−1))

I Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)

I Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

Baseline (unpenalized IS−NMF)

Regularized (λ = 1)

Regularized (λ = 10)

3300 3400 3500 3600 3700 3800

Regularized (λ = 100)

One row of H with increasing smoothness (Févotte, 2011)
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Other common regularizers

I Orthogonal NMF: HHT = I.
Essentially nonnegative clustering (Ding et al., 2006).

I Projective NMF: H = WTV.
Essentially nonnegative PCA (Yang and Oja, 2010).

I Symmetric NMF: H = WT .
Popular in graph clustering (Kuang et al., 2012; Huang et al., 2013).

I Separable NMF: W is a subset of columns of V.
Very active research topic! (Donoho and Stodden, 2004; Arora et al., 2016)

I Archetypal NMF: W belongs to the column-range of V.
A relaxation of separable NMF (Ding et al., 2010; Chen et al., 2014).

I Minimum-volume NMF: penalize the aperture of W.
Very active research topic! (Miao and Qi, 2007; Chan et al., 2009)
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

I Variants of the linear mixing model account for “non-linear” effects:

vn ≈Whn + rn

I Often, rn has a parametric form, e.g., linear combination of quadratic
components {wk �wj}kj (Nascimento and Bioucas-Dias, 2009; Fan et al., 2009;

Altmann et al., 2012)

I Nonlinear effects usually affect few pixels only.

I We treat them as non-parametric sparse outliers.

min
W,H,R≥0

Dβ(V|WH + R) + λ‖R‖2,1

where ‖R‖2,1 =
∑N

n=1 ‖rn‖2 induces sparsity at group level.

I A form of robust NMF (Candès et al., 2009)

I Optimized with majorization-minimization.
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Moffett Field data

reproduced from (Dobigeon, 2007)
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Unmixing results

spectral endmembers & activation maps outlier energy {‖rn‖}n
(red: β = 1, black: β = 2) (β = 1)

0 1 2

Vegetation

0 1 2

Water

0 1 2

Soil

Outlier term captures specific water/soil interactions.
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Villelongue/Madonna data (forested area)
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Robust NMF for nonlinear hyperspectral unmixing
(Févotte and Dobigeon, 2015)

Unmixing results

spectral endmembers & activation maps outlier energy {‖rn‖}n
(red: β = 1, black: β = 2) (β = 1)

0.4 0.6 0.8 1

Chesnut tree

0.4 0.6 0.8 1

Oak tree

0.4 0.6 0.8 1

Endm. #3

Outlier term seems to capture patterns due to sensor miscalibration.
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Factor analysis in dynamical PET
(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

I 3D functional imaging
I Observe the temporal evolution of the brain activity after injecting a radiotracer

(biomarker of a specific compound).
I vn is the time-activity curve (TAC) in voxel n.
I Neuroimaging: mixed contributions of 4 TAC signatures in each voxel.

Factor analysis SLMM �-SLMM PNMM Conclusion and perspectives

Voxel decomposition in dynamic PET

From compartmental modeling (CM) [HBS16]

CPET = VpCP + (1 � Vp)CT. (1.1)
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PET voxel decomposition [Yaq+12]

Yanna Cruz Cavalcanti — IRIT/INP-ENSEEIHT Factor analysis of dynamic PET images October 31st, 2018 6 / 48

Dynamic positron emission tomography PET voxel decomposition

reproduced from (Cavalcanti, 2018)
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Factor analysis in dynamical PET
(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Mixing model
I the specific-binding TAC signature varies in space:

vn ≈ [w1 + δn]h1n +
K∑

k=2

wkhkn

≈ [w1 + Dbn]h1n +
K∑

k=2

wkhkn

≈Whn + h1n Dbn

I D is fixed and pre-trained using labeled or simulated data.

Estimation

min
W,H,B≥0

Dβ(V|WH + 1 h1 �DB) + λ‖B‖2,1

Optimized with majorization-minimization.
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Factor analysis in dynamical PET
(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Unmixing results
I real dynamic PET image of a stroke subject injected with a tracer for

neuroinflammation.
I MRI ground-truth region of the stroke.
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Fig.: Specific-binding activation (h1n) and variability maps (‖bn‖2,1)

in three different planes and for three values of β
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End of Part I

Half-time conclusions

I NMF has become a popular data processing tool over the last 20 years.

I Very suited to unmixing problems in unsupervised settings.

I Exciting non-convex optimization problem with non-Euclidean measures of fit.

I MM is a versatile algorithmic framework for NMF.
I Simple multiplicative algorithms for the β-divergence and beyond.
I Can be adapted to regularized NMF and variants.
I More efficient algorithms exist for the quadratic loss.

Funding acknowledgement: European Research Council, National Research Fondation Singapore,
Agence Nationale de la Recherche France
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Nonnegative Rank Selection by Automatic Relevance
Determination (ARD)
Tan and Févotte (2013)

▶ Recall that in NMF, one is given a data matrix V ∈ RF×N
+ and tries to find a

dictionary matrix W ∈ RF×K
+ and coefficient matrix H ∈ RK×N

+ such that

V ≈ V̂ = WH.

▶ Usually solved using a constrained minimization problem

min
W,H≥0

D
(
V |WH

)
=

F∑
f=1

N∑
n=1

d
(
[V]fn | [WH]fn

)
.

▶ How to find the common/latent dimension K?

▶ If K is too large =⇒ Overfitting! K too small =⇒ Poor fit to model!

▶ Solve this by automatic relevance determination (Bishop, 1999; Tipping, 2001)

▶ Natural extension of regularization ideas discussed by Cédric.
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Probabilistic Model for ARD in NMF

▶ Assign each column of W and each row of H priors

W =

 | | |
w1 w2 . . . wK

| | |

 H =


− h1 −
− h2 −

...
− hK −



▶ Tie the kth column wk and the kth row hk together through a common
relevance weight λk ≥ 0.

▶ Maintain nonnegativity by choosing nonnegative priors, e.g.,
▶ Half Gaussian, i.e.,

p(wfk | λk) =
( 2

πλk

)1/2

exp
(
− w 2

fk

2λk

)
p(hkn | λk) =

( 2

πλk

)1/2

exp
(
− h2

kn

2λk

)
.

▶ Exponential

p(wfk | λk) =
1

λk
exp

(
− wfk

λk

)
p(hkn | λk) =

1

λk
exp

(
− hkn

λk

)
▶ Both these distributions are supported on R+.
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Half Gaussian and Exponential
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Figure: Half Gaussian and Exponential Distributions
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Probabilistic Model for ARD in NMF

V w1 wK

h1 hK

λ1 λK

▶ λk is a common variance-like quantity.

▶ When λk ↓ 0, ∥wk∥ and ∥hk∥ both tend to 0.

▶ The kth component can be removed without compromising data fidelity.
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Probabilistic Model for ARD in NMF

▶ Prior on common variance-like parameter λk is inverse-Gamma

p(λk ; a, b) =
ba

Γ(a)
λ
−(a+1)
k exp

(
− b

λk

)
,

where a and b are the shape and scale hyperparameters, respectively.

▶ Set a and b to be the same for all k.

▶ The inverse-Gamma prior is chosen because it is conjugate to the
variance-parameter in the Half Gaussian and the inverse rate parameter in the
Exponential.

▶ Leads to closed-form updates.

▶ Assume independence

p(λ; a, b) =
K∏

k=1

p(λk ; a, b).
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Probabilistic Model for ARD in NMF

λk

▶ V = [vfn] are observed;
▶ a, b are hyperparameters;
▶ Want to learn W = [wfn] and H = [hkn] and implicitly K , i.e.,

K = |{k ∈ [K ] : λk > threshold}| .
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Objective function for ARD in NMF

▶ Combining the prior and likelihood, the objective function (log-posterior) can
be written as

C (W,H,λ) = − log p(W,H,λ | V)

c
=

1

ϕ
Dβ(V |WH) +

K∑
k=1

1

λk

(
f (wk) + f (hk) + b

)
+ c log λk .

▶ Constant ϕ is the dispersion parameter (of the Tweedie distribution):
▶ β = 2: Gaussian distribution and ϕ = σ2;
▶ β = 1: Poisson distribution and ϕ = 1;
▶ β = 0: Gamma distribution and ϕ = 1/α where α is the shape parameter;

▶ Constant c and function f depend on the likelihood model:
▶ Half Gaussian model: f (x) = 1

2
∥x∥2 and c = (F + N)/2 + a+ 1;

▶ Exponent model: f (x) = ∥x∥1 and c = F + N + a+ 1

▶ This cost has connections to reweighted ℓ1 minimization (Candès et al., 2008)
and group LASSO (Yuan and Lin, 2007).
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Majorization-Minimization Algorithms for ℓ2-ARD-NMF

▶ Using the MM ideas discussed by Cédric, we can derive updates for W and H:

H←− H ·
(

W⊤[(WH)·(β−2) · V]
W⊤[(WH)]·(β−1) + ϕH/repmat(λ, 1,N)

)ξ(β)

W←−W ·
(

[(WH)·(β−2) · V]H⊤

[(WH)]·(β−1)H⊤ + ϕW/repmat(λ,F , 1)

)ξ(β)

where

ξ(β) =

{
1/(3− β) β ≤ 2
1/(β − 1) β > 2

.

▶ The update for λ is

λk ←−
1
2∥wk∥2 + 1

2∥hk∥
2 + b

c
∀ k ∈ [K ].
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Estimating Hyperparameter b via the Method of Moments

▶ By the law of large numbers

µ̂V =
1

FN

∑
f ′,n′

vf ′n′ ≈ E[vfn] = E[v̂fn] =
∑
k

E[wfkhkn].

▶ Can compute E[v̂fn] =
∑

k E[wfkhkn] in closed-form for the Half Gaussian and
Exponential models using their moments:

E[v̂fn] =


2Kb

π(a− 1)
Half Gaussian

Kb2

(a− 1)(a− 2)
Exponential

▶ Can “invert” these relations to yield

b̂ =


π(a− 1)µ̂V

2K
Half Gaussian√

(a− 1)(a− 2)µ̂V

K
Exponential
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Swimmer Decomposition Results

8 data samples (among 256)

Estimated W using exponential priors/ℓ1 penalization
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Audio Decomposition Results
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Audio Decomposition Results
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Figure: Histograms of standard deviation values of all K = 18 components produced by
Itakura–Saito NMF and ARD Itakura–Saito NMF (with ℓ2 penalization). ARD IS-NMF
only retains the 6 “right” components
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Audio Decomposition Results

1 − TOL = 1.51e+04 − STD = 4.75e−02

2 − TOL = 8.73e+03 − STD = 3.31e−02

3 − TOL = 3.91e+03 − STD = 2.05e−02

4 − TOL = 2.57e+03 − STD = 1.39e−02

5 − TOL = 1.01e+03 − STD = 8.37e−03

6 − TOL = 4.77e+01 − STD = 2.48e−03

7 − TOL = 2.46e−02 − STD = 2.00e−05

8 − TOL = 2.35e−02 − STD = 2.12e−05

9 − TOL = 2.23e−02 − STD = 1.85e−05

10 − TOL = 2.09e−02 − STD = 2.04e−05

time

1 − TOL = 1.51e+04 − STD = 4.75e−02

2 − TOL = 8.73e+03 − STD = 3.31e−02

3 − TOL = 3.91e+03 − STD = 2.05e−02

4 − TOL = 2.57e+03 − STD = 1.39e−02
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6 − TOL = 4.77e+01 − STD = 2.48e−03

7 − TOL = 2.46e−02 − STD = 2.00e−05

8 − TOL = 2.35e−02 − STD = 2.12e−05

9 − TOL = 2.23e−02 − STD = 1.85e−05

10 − TOL = 2.09e−02 − STD = 2.04e−05

time

Figure: First 4 components extract the individual notes and the next 2 components
extract the sound of hammer hitting the strings and the sound produced by the sustain
pedal
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Concluding Remarks from using ARD on NMF

▶ Introduced an Automatic Relevance Determination framework for learning the
common/latent dimension K in NMF.

▶ Simple, cheap and intuitive.

▶ Since its publication, ARD NMF (Tan and Févotte, 2013) has been used
successfully in biology and genomics, among other scientific fields, e.g.,
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Outline

Nonnegative rank selection by automatic relevance determination

Distributionally robust nonnegative matrix factorization

NMF in ranking models and sports analytics

PSDMF and links with phase retrieval and affine rank minimization
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Distributionally Robust Nonnegative Matrix Factorization
(Gillis, Hien, Leplat, and Tan, 2022)

▶ The parameter β in Dβ controls the noise statistics on WH (Tweedie distn);

▶ If vfn = [WH]fn + Gaussian noise (β = 2), then

− log p(vfn | [WH]fn)
c
=

1

2σ2

(
[WH]fn − vfn

)2
,

then maximizing the log-likelihood ≡ minimizing D2 (Frobenius-NMF).

▶ If vfn ∼ Poisson([WH]fn) (β = 1), then

− log p(vfn | [WH]fn) = vfn log
vfn

[WH]fn
+ [WH]fn,

then maximizing the log-likelihood ≡ minimizing D1 (KL-NMF).
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Applications, MO-NMF and DR-NMF

▶ Audio signal processing (Févotte et al., 2009; Virtanen, 2007): β ∈ {0, 1}

▶ Sparse document datasets (Chi and Kolda, 2012): β ∈ {1, 2}

▶ How to choose an appropriate β when given a new task? Say we only consider
β ∈ Ω where Ω ⊂ R is a finite set, e.g., Ω = {0, 1, 2}.

▶ Multi-Objective NMF (MO-NMF)

min
W,H≥0

{Dβ(V,WH)}β∈Ω

which is solved for a given probability vector λ = (λβ)β∈Ω using

min
W,H≥0

[
Dλ

Ω (V,WH) =
∑
β∈Ω

λβDβ(V,WH)

]
▶ Distributionally Robust NMF (DR-NMF)

min
W,H≥0

max
β∈Ω

Dβ(V,WH)
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Scaling of the Objective

▶ For the family of β-divergences,

Dβ(αV, αWH) = αβDβ(V,WH) ∀α > 0.

▶ Not desirable in practice as datasets are not properly scaled.

▶ Compute an approximate solution

(Wβ ,Hβ) ≈ argmin
W,H≥0

Dβ(V,WH) with error eβ = Dβ(V,WβHβ)

and define

Dβ(V,WH) =
Dβ(V,WH)

eβ
so that Dβ(V,WβHβ) = 1.

▶ Consider the optimization problem

min
W,H≥0

D
λ

Ω(V,WH) where D
λ

Ω(V,WH) =
∑
β∈Ω

λβDβ(V,WH).
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Multiplicative Update Algorithm

▶ Let f : Rd → R be a differentiable function. Consider the general optimization
problem with nonnegativity constraints

min{f (x) : x ≥ 0}.

▶ Rescaled gradient descent method (with rescaling matrix B)

x+ = x− B∇f (x)

▶ Say that ∇f (x) = ∇+f (x)−∇−f (x) where ∇+f (x) ≥ 0 and ∇−f (x) > 0.

▶ Taking Bii = xi/[∇+f (x)]i , we obtain

x+ = x− [x]

[∇+f (x)]

(
∇+f (x)−∇−f (x)

)
= x · ∇−f (x)

∇+f (x)

▶ No tuning of step-sizes. If x ≥ 0, then x+ ≥ 0 as well.
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Application of MU Algorithm to DR-NMF

▶ Recall that for a fixed probability vector λ, we want to solve

min
W,H≥0

D
λ

Ω(V,WH), where D
λ

Ω(V,WH) =
∑
β∈Ω

λβDβ(V,WH).

▶ Alternating minimization procedure: Minimize over H, then over W.

▶ For all β,

∇HDβ(V,WH) = ∇H
+Dβ(V,WH)−∇H

−Dβ(V,WH),

where ∇H means gradient w.r.t. H.

▶ After some tedious calculation,

∇H
+Dβ(V,WH) = W⊤(WH)·(β−1) and

∇H
−Dβ(V,WH) = W⊤

(
(WH)·(β−2) · V

)
,
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Application of MU Algorithm to DR-NMF

▶ Update H as follows:

H+ = H ·
∑

β∈Ω λβ

(
∇H

−Dβ(V,WH)
)∑

β∈Ω λβ

(
∇H

+Dβ(V,WH)
) .

▶ Sometimes this may not result in a decrease in the objective, so we set γ = 1
and H+

1 = H+ and successively find γ such that while

D
λ

Ω(V,WH+
γ ) > D

λ

Ω(V,WH)

we reduce
γ ←− γ

2

and set
H+

γ = (1− γ)H+ γH+.

▶ But this tweak of γ is rarely needed.
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Algorithm for DR-NMF

▶ For fixed λ, we have an MU algorithm to solve

min
W,H≥0

D
λ

Ω(V,WH), where D
λ

Ω(V,WH) =
∑
β∈Ω

λβDβ(V,WH).

▶ But we want to solve for W,H ≥ 0 that minimizes

max
β∈Ω

Dβ(V,WH) = max
λ≥0:∥λ∥1=1

∑
β∈Ω

λβDβ(V,WH).

▶ So we want to solve

min
W,H≥0

max
λ≥0:∥λ∥1=1

∑
β∈Ω

λβDβ(V,WH)

which is a min-max optimization problem.

▶ There are dual subgradient methods to solve this with convergence guarantees,
but we found them to be slow.
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Frank–Wolfe-type Algorithm for DR-NMF

▶ Initialize λβ = 1/|Ω| for all β ∈ Ω.

▶ For each t = 1, 2, . . ., we obtain H(t+1) using the MU algorithm with
W = W(t) and λ = λ(t).

▶ We obtain W(t+1) using the MU algorithm with H = H(t+1) and λ = λ(t).

▶ Let β∗ ∈ argmaxβ∈Ω Dβ(V,W(t+1)H(t+1)) and

[λ
(t)
∗ ]β =

{
1 if β = β∗,
0 if β ̸= β∗.

Update
λ(t+1) = (1− ρt)λ

(t) + ρtλ
(t)
∗ ,

where ρt = 1/t.

▶ This is a Frank–Wolfe-type algorithm (FW would use ρt = 2/(t + 2)).

26/64



Frank–Wolfe-type Algorithm for DR-NMF

▶ Initialize λβ = 1/|Ω| for all β ∈ Ω.

▶ For each t = 1, 2, . . ., we obtain H(t+1) using the MU algorithm with
W = W(t) and λ = λ(t).

▶ We obtain W(t+1) using the MU algorithm with H = H(t+1) and λ = λ(t).

▶ Let β∗ ∈ argmaxβ∈Ω Dβ(V,W(t+1)H(t+1)) and

[λ
(t)
∗ ]β =

{
1 if β = β∗,
0 if β ̸= β∗.

Update
λ(t+1) = (1− ρt)λ

(t) + ρtλ
(t)
∗ ,

where ρt = 1/t.

▶ This is a Frank–Wolfe-type algorithm (FW would use ρt = 2/(t + 2)).

26/64



Frank–Wolfe-type Algorithm for DR-NMF

▶ Initialize λβ = 1/|Ω| for all β ∈ Ω.

▶ For each t = 1, 2, . . ., we obtain H(t+1) using the MU algorithm with
W = W(t) and λ = λ(t).

▶ We obtain W(t+1) using the MU algorithm with H = H(t+1) and λ = λ(t).

▶ Let β∗ ∈ argmaxβ∈Ω Dβ(V,W(t+1)H(t+1)) and

[λ
(t)
∗ ]β =

{
1 if β = β∗,
0 if β ̸= β∗.

Update
λ(t+1) = (1− ρt)λ

(t) + ρtλ
(t)
∗ ,

where ρt = 1/t.

▶ This is a Frank–Wolfe-type algorithm (FW would use ρt = 2/(t + 2)).

26/64



Frank–Wolfe-type Algorithm for DR-NMF

▶ Initialize λβ = 1/|Ω| for all β ∈ Ω.

▶ For each t = 1, 2, . . ., we obtain H(t+1) using the MU algorithm with
W = W(t) and λ = λ(t).

▶ We obtain W(t+1) using the MU algorithm with H = H(t+1) and λ = λ(t).

▶ Let β∗ ∈ argmaxβ∈Ω Dβ(V,W(t+1)H(t+1)) and

[λ
(t)
∗ ]β =

{
1 if β = β∗,
0 if β ̸= β∗.

Update
λ(t+1) = (1− ρt)λ

(t) + ρtλ
(t)
∗ ,

where ρt = 1/t.

▶ This is a Frank–Wolfe-type algorithm (FW would use ρt = 2/(t + 2)).

26/64



Frank–Wolfe-type Algorithm for DR-NMF

▶ Initialize λβ = 1/|Ω| for all β ∈ Ω.

▶ For each t = 1, 2, . . ., we obtain H(t+1) using the MU algorithm with
W = W(t) and λ = λ(t).

▶ We obtain W(t+1) using the MU algorithm with H = H(t+1) and λ = λ(t).

▶ Let β∗ ∈ argmaxβ∈Ω Dβ(V,W(t+1)H(t+1)) and

[λ
(t)
∗ ]β =

{
1 if β = β∗,
0 if β ̸= β∗.

Update
λ(t+1) = (1− ρt)λ

(t) + ρtλ
(t)
∗ ,

where ρt = 1/t.

▶ This is a Frank–Wolfe-type algorithm (FW would use ρt = 2/(t + 2)).

26/64



Remarks on our Algorithm for DR-NMF

▶ Updates for W and H are meant to approximately minimize

(W,H) 7→ D
λ(t)

Ω (V,WH)

▶ For the update of λ, notice that for all β ∈ Ω

Dβ∗(V,W(t+1)H(t+1)) ≥ Dβ(V,W
(t+1)H(t+1)),

and since λ 7→ D
λ

β is linear, we have

λ(t)
∗ = argmax

{
D

λ

β (V,W
(t+1)H(t+1)) : λ ≥ 0, ∥λ∥1 = 1

}
.

▶ The β∗-divergence is given the most importance at the next iteration

▶ Forcing all β-divergences to decrease as well.
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Sparse Document Data Sets

▶ For sparse data sets, one often chooses β ∈ Ω = {1, 2}

▶ For sparse word-count datasets, Poisson noise is the most appropriate

▶ But say we do not know this, we can compare DR-NMF, KL-NMF and
Frobenius-NMF

▶ Use these NMF methods for clustering (topic modeling)

▶ Clustering accuracy

accuracy({C̃i}ri=1) := min
π:[r ]→[r ]

1

r

r∑
i=1

∣∣Ci ∩ C̃π(i)

∣∣
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Sparse Document Data Sets

Figure: Clustering accuracies of various methods
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Dense Time-Frequency Matrices of Audio Signals

▶ Use the data set piano Mary

Figure: Musical score of “Mary had a little lamb”. The notes are activated as follows:
E4, D4, C4, D4, E4, E4, E4.

▶ Considered no added noise and adding Poisson noise to the music piece

▶ Tested in DR-NMF (with Ω = {0, 1}), IS-NMF (β = 0) and KL-NMF (β = 1)
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No Added Noise

Figure: Evolution of scaled β-divergences

▶ DR-NMF is able to compute a model with low IS- and KL-error

▶ KL-NMF has IS-error 9 times that of IS-NMF
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Added Poisson Noise

Figure: IS-NMF, KL-NMF, and DR-NMF with Ω = {0, 1} in Poisson noise.

▶ Rows of H are recovered successfully.

▶ C4 is activated once, D4 twice and E4 four times.
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Outline

Nonnegative rank selection by automatic relevance determination

Distributionally robust nonnegative matrix factorization

NMF in ranking models and sports analytics

PSDMF and links with phase retrieval and affine rank minimization
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Using Nonnegative Matrix Factorization in Ranking Models for
Sports Analytics
(Xia, Tan, Filstroff, and Févotte, 2019)

2005 2006 

Roger Federer 

3 Grand Slam 

2010 

Rafael Nadal 

3 Grand Slam 

2011 2015 2016 

Novak Djokovic 

5 Grand Slam 

1960s 

Rod Laver 

3 Grand Slam 

 
Who is the greatest players  

of all time? 

Who is the greatest of all time (GOAT)?
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What could be a Pertinent Latent Variable?

Wimbledon 

Grass Outdoors 

Australian Open 

Hard Outdoors 

French Open 

Clay Outdoors 

US Open 

Hard Outdoors 
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Ranking Tennis Players with Latent Variables

tournaments

M
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Figure: The hybrid BTL-NMF Model

▶ Bradley–Terry–Luce (Bradley and Terry, 1952; Luce, 1959) ranking model:

Pr
(
player i beats player j | tournament m

)
=

λmi

λmi + λmj

▶ λmi : Skill level of player i in tournament m.
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Data Collected and Likelihood Function

GIVEN: D ~ M (N x N) matrices

N players

D = 

N 
players

𝑏𝑖𝑗
(𝑚)

M tournaments

Number of times 
player i beats player j 

in tournament m

Output: W ~ (M x K) matrix
H ~ (K x N) matrix

K

N

W

H

K

M

Likelihood Function

L
(
W,H | D = {b(m)

ij }
)

=
M∏

m=1

∏
(i,j)

(
[WH]mi

[WH]mi + [WH]mj︸ ︷︷ ︸
Prob. i beats j in tourn. m

)b
(m)
ij
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Objective Function to be Minimized

▶ Take the negative log of the likelihood to get the following objective function

argmin
W,H≥0

f (W,H | D) = − log L
(
W,H | D

)
≡ argmin

W,H≥0

M∑
m=1

∑
(i,j)∈Pm

b
(m)
ij [− log([WH]mi ) + log([WH]mi + [WH]mj)] ,

where Pm is the set of games that i and j played in tournament m.

▶ Unfortunately, this objective function is not convex in (W,H).

▶ Majorization-Minimization (MM) comes to the rescue again!

▶ Main ideas: For any concave function g (tangent inequality),

g(y) ≤ g(x) +∇g(x)⊤(y − x)

and Jensen’s inequality for the convex function t 7→ − log t.
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Majorization-Minimization Updates

▶ After some straightforward but tedious algebra, we can construct two auxiliary
functions u1(W, W̃ | H) and u2(H, H̃ |W) that majorize the objective function

f (W,H | D) = − log L
(
W,H | D

)
.

▶ Implement

W(t+1) = argmin
W≥0

u1(W,W(t) | H(t))

H(t+1) = argmin
H≥0

u2(H,H(t) |W(t+1))
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Majorization-Minimization Updates

▶ Update for W:

wmk ←−

∑
(i,j)∈Pm

b
(m)
ij

wmkhki
[WH]mi∑

(i,j)∈Pm

b
(m)
ij

hki+hkj
[WH]mi+[WH]mj

.

▶ Update for H:

hki ←−

∑
m

∑
j ̸=i :(i,j)∈Pm

b
(m)
ij

wmkhki
[WH]mi∑

m

∑
j ̸=i :(i,j)∈Pm

(
b
(m)
ij + b

(m)
ji

)
wmk

[WH]mi+[WH]mj

.

▶ Simple, fuss-free updates.

▶ Used a few other hacks to ensure normalization and no divide by 0 errors.

▶ Under the right conditions, can prove convergence guarantees to “stationary
points” (Zhao and Tan, 2018).

40/64



Majorization-Minimization Updates

▶ Update for W:

wmk ←−

∑
(i,j)∈Pm

b
(m)
ij

wmkhki
[WH]mi∑

(i,j)∈Pm

b
(m)
ij

hki+hkj
[WH]mi+[WH]mj

.

▶ Update for H:

hki ←−

∑
m

∑
j ̸=i :(i,j)∈Pm

b
(m)
ij

wmkhki
[WH]mi∑

m

∑
j ̸=i :(i,j)∈Pm

(
b
(m)
ij + b

(m)
ji

)
wmk

[WH]mi+[WH]mj

.

▶ Simple, fuss-free updates.

▶ Used a few other hacks to ensure normalization and no divide by 0 errors.

▶ Under the right conditions, can prove convergence guarantees to “stationary
points” (Zhao and Tan, 2018).

40/64



Majorization-Minimization Updates

▶ Update for W:

wmk ←−

∑
(i,j)∈Pm

b
(m)
ij

wmkhki
[WH]mi∑

(i,j)∈Pm

b
(m)
ij

hki+hkj
[WH]mi+[WH]mj

.

▶ Update for H:

hki ←−

∑
m

∑
j ̸=i :(i,j)∈Pm

b
(m)
ij

wmkhki
[WH]mi∑

m

∑
j ̸=i :(i,j)∈Pm

(
b
(m)
ij + b

(m)
ji

)
wmk

[WH]mi+[WH]mj

.

▶ Simple, fuss-free updates.

▶ Used a few other hacks to ensure normalization and no divide by 0 errors.

▶ Under the right conditions, can prove convergence guarantees to “stationary
points” (Zhao and Tan, 2018).

40/64



Data Collection

4 Grand Slam + 10 Most Famous ATP tournaments 

Australian Open 

Roland Garros 

Wimbledon 

US Open 

Indian Wells Masters 

Madrid Open 

Miami Open 

Monte-Carlo Masters 

Pairs Masters 

Italian Open 

Canada Masters 

Cincinnati Masters 

Shanghai Masters 

ATP Finals 

M = 14 Top 20 players who both 

Rafael Nadal 

Novak Djokovic 

David Ferrer 

Tomas Berdych 

Roger Federer 

Andy Murray 

Fernando Verdasco 

Philipp Kohlschreiber 

Richard Gasquet 

Gilles Simon 

Stan Wawrinka 

Jo-Wilfried Tsonga 

Marin Cilic 

Feliciano Lopez 

John Isner 

Nicolas Almagro 

Juan Martin del Potro 

Gael Monfils 

Milos Raonic 

Kei Nishikori 

N = 20 

Have the highest number of participation  

in the 14 tournaments from 2007-2017  

Have the highest total number of matches  

played from 2007-2017 
∩ 
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Data Collection

Name
Rafael 
Nadal

Novak 
Djokovic

David 
Ferrer

Tomas 
Berdych

Roger 
Federer

Andy 
Murray

Fernando 
Verdasco

Philipp 
Kohlschreiber

Richard 
Gasquet

Rafael Nadal 0 0 0 1 3 1 1 2 0
Novak Djokovic 1 0 3 2 3 5 2 0 0

David Ferrer 1 0 0 0 0 0 0 0 1
Tomas Berdych 1 0 0 0 0 0 1 1 1
Roger Federer 1 1 0 4 0 2 0 0 0
Andy Murray 1 0 2 1 1 0 1 0 0

Fernando Verdasco 1 0 0 0 0 1 0 0 0
Philipp Kohlschreiber 0 0 0 0 0 0 0 0 0

Richard Gasquet 0 0 0 0 0 0 0 0 0

Non-zero

Zeros on the diagonal

(𝑏𝑖𝑖
(𝑚)

= 0)

True zeros 

(𝑏𝑖𝑗
(𝑚)

= 0, 𝑏𝑗𝑖
(𝑚)

> 0)

Missing data 

(𝑏𝑖𝑗
(𝑚)

= 𝑏𝑗𝑖
(𝑚)

= 0)

1
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Results on Tournaments for Men’s Dataset

①

②
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←
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non-clay clay

Latent variable discovered to be “surface type”
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Results on Player Rankings by Latent Variable

Clay player
Grass player

Clay player

Non-clay player

Hard Court player

non-clay clay

Figure: Players rankings according to discovered latent variable – “surface type”
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Results on Player Rankings by Tournament

←

←

←
←
←

①

②
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⑤

Figure: Players’ skill levels according to tournaments
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Concluding Remarks for NMF for Sports Analytics

▶ Developed a statistical model that is a hybrid between the BTL
ranking/pairwise comparison model

Pr
(
player i beats player j | tournament m

)
=

λmi

λmi + λmj

and nonnegative matrix factorization (NMF).

▶ Developed simple update rules based on MM that are easy to implement and
have convergence guarantees.

▶ Confirms our intuition that court surface is a pertinent latent variable.

▶ Ranked players according to the discovered latent variable (court surface) over
a time window of 10 years.
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Outline

Nonnegative rank selection by automatic relevance determination

Distributionally robust nonnegative matrix factorization

NMF in ranking models and sports analytics

PSDMF and links with phase retrieval and affine rank minimization
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Positive Semidefinite Matrix Factorization (PSDMF)
(Fiorini, Massar, Pokutta, Tiwary, and Wolf, 2012; Gouveia, Parrilo, and Thomas, 2013)

▶ Given a nonnegative matrix V ∈ RF×N
+ , find (symmetric) K × K positive

semidefinite (PSD) matrices Wf , f = 1, . . . ,F and Hn, n = 1, . . . ,N such that

vfn = [V]fn = ⟨Wf ,Hn⟩︸ ︷︷ ︸
matrix inner product

= Tr(WfHn)︸ ︷︷ ︸
trace

.

▶ The PSD rank of V is smallest K such that V admits an exact PSD
factorization.

▶ If {Wf } and {Hn} are diagonal, let

wf = diag (Wf ) ∈ RK
+, and hn = diag (Hn) ∈ RK

+,

then
vfn = [V]fn = ⟨wf ,hn⟩︸ ︷︷ ︸

vector inner product

=
∑
k

wfkhkn.

PSDMF reduces to NMF!
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PSDMF and PSD Rank

▶ Extension linking NMF with geometric and linear constraints in linear
programming (Yannakakis, 1991)

▶ The smallest number K such that a polytope can be written as a projection (a
“shadow”) of a spectrahedron of size K (an affine slice of the cone of K × K
positive semidefnite matrices SK+) is equal to the PSD rank of a slack matrix of
the original polytope.

▶ Example: Slack matrix of the square.

S4 =


0 1 1 0
0 0 1 1
1 0 0 1
1 1 0 0

 ,

Figure: From Averkov et al. (2018)

rank(S4) = 3, nn-rank(S4) = 4 and psd-rank(S4) = 3, a spectrahedron in S3+.
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Other Motivations for PSDMF

▶ Of fundamental importance in various fields:

▶ Combinatorial optimization (Gouveia et al., 2013; Fawzi et al., 2015);
▶ Quantum information theory (Fiorini et al., 2012; Fawzi et al., 2015);
▶ Quantum communications and quantum computing (Jain et al., 2013; van

Apeldoorn et al., 2020);
▶ Probabilistic modeling (Glasser et al., 2019);
▶ Quantum-based recommendation systems (Stark, 2016).

▶ Connection to quantum is because quantum measurements {Mi}, known as
positve operator valued measures (POVMs) are PSD and sum to the identity∑

i

Mi = I.

▶ We are mainly concerned with algorithms and approximate factorization.
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Objective Function

▶ Consider the PSMDF model

vfn = [V]fn = ⟨Wf ,Hn⟩ = Tr(WfHn)

▶ PSD matrices {Wf }Ff=1 and {Hn}Nn=1 can be estimated by minimizing a
quadratic objective function (Stark, 2016; Vandaele et al., 2018):

g({Wf }Ff=1, {Hn}Nn=1) =
1

2

∑
f ,n

(vfn − Tr(WfHn))
2

▶ For fixed {Wf }Ff=1, g is convex in {Hn}Nn=1 and vice versa (Vandaele et al.,
2018).

▶ Other objective functions are possible (Glasser et al., 2019; Basu et al., 2016;
Lahat and Févotte, 2021)
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Alternating Minimization

▶ Minimize the objective function g w.r.t. {Hn}Nn=1 for fixed {Wf }Ff=1, i.e.,

{H+
n }Nn=1 = argmin

{Hn}N
n=1

g({Wf }Ff=1, {Hn}Nn=1)

▶ Change roles, i.e.,

{W+
f }

F
f=1 = argmin

{Wf }F
f=1

g({Wf }Ff=1, {H+
n }Nn=1)

▶ Repeat until a stopping criterion is achieved;

▶ Several other algorithms had been independently developed by Vandaele et al.
(2018), Basu et al. (2016), Glasser et al. (2019) and Stark (2016) based on
this alternating approach.
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Decrease Objective Separately w.r.t. each Hn

▶ Focus on the first problem:

{H+
n }Nn=1 = argmin

{Hn}N
n=1

g({Wf }Ff=1, {Hn}Nn=1)

▶ Objective function can be written as a sum of N terms

g({Wf }Ff=1, {Hn}Nn=1) =
N∑

n=1

gn({Wf }Ff=1,Hn)

where

gn({Wf }Ff=1,Hn) =
1

2

F∑
f=1

(vfn − Tr(WfHn))
2 =

1

2
∥vn −W(Hn)∥2

and W(H) = [⟨W1,H⟩, . . . , ⟨WF ,H⟩]⊤ ∈ RF for any matrix H.
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Link with Affine Rank Minimization and Phase Retrieval
(Lahat, Lang, Tan, and Févotte, 2021; Lahat and Févotte, 2021)

▶ For a specific n = 1, . . . ,N, estimating Hn is tantamount to

min
Hn

∥vn −W(Hn)∥2 subject to Hn ∈ SK+

and possibly a rank constraint on Hn;

▶ Because in PSDMF, one typically imposes low rank constraints on Wf and Hn

too (“inner ranks” are small);

▶ This optimization is known as affine rank minimization (Recht et al., 2010;
Jain et al., 2010);

▶ If rank(Wf ) = 1 for all f = 1, . . . ,F , and rank(Hn) = 1, this is known as phase
retrieval (Candès et al., 2015).
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Affine Rank Minimization and Hard Thresholding
(Lahat, Lang, Tan, and Févotte, 2021)

▶ Many algorithms for affine rank minimization and phase retrieval;

▶ Use them for PSDMF to solve the subproblem to update {Hn}Nn=1 given W.

▶ Projection of a matrix onto the set of K × K PSD matrices of rank ≤ R is
denoted as HSK+,R(·), also known as hard thresholding;

▶ Can be computed as (Jain et al., 2010; Tu et al., 2016)

HSK+,R(H) = UΛRU
⊤

where

▶ ΛR ∈ RR×R is a diagonal nonnegative matrix with the R largest nonnegative
eigenvalues of H on its main diagonal;

▶ the columns of U ∈ RK×R are the eigenvectors of W associated with these R
largest nonnegative eigenvalues

▶ Can also use singular value projection; see Lahat et al. (2021) for details.
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Majorization-Minimization Algorithm for PSDMF
(Soh and Varvitsiotis, 2021)

▶ While links to phase retrieval and affine rank minimization are nice, theoretical

guarantees (e.g., convergence guarantees) are lacking. /

▶ Would be good to develop a multiplicative update-type algorithm based on

majorization-minimization (MM).,

Y. S. Soh (NUS Math) A. Vavitsiotis (SUTD)

“Slides” below borrowed from Y. S. Soh with permission and with thanks.
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From NMF to PSDMF

Lee and Seung (1999) update rule writes

h←− h · W⊤v

W⊤Wv
.

Embed h as a diagonal matrix.
. . .

hk
. . .

←−


. . .
(W⊤v)k

(W⊤Wh)k
. . .




. . .

hk
. . .


nng vectors ∼= diagonal PSD matrices
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From NMF to PSDMF

Re-arrange
. . .

hk
. . .

←−


. . .
(W⊤v)k

(W⊤Wh)k
. . .




. . .

hk
. . .



=


. . .

hk
(W⊤Wh)k

. . .




. . .

(W⊤v)k
. . .


PSD Factorization

H︸︷︷︸
matrix

← T︸︷︷︸
operator

(W⊤v︸ ︷︷ ︸
matrix

)

Find: operator T that is (i) simple, (ii) preserves PSD-ness, (iii) generalizes
averaging of H and ([WTW](H))−1.
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From NMF to PSDMF

▶ The analogue of diagonal scaling is conjugation

W←−M(W⊤v)M

where
M = Geometric mean

(
H, ([WTW](H))−1

)

▶ Preserves PSD-ness and is simple.
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Geometric Mean of Two Positive Definite (PD) Matrices

▶ Definition: The matrix geometric mean of two PD matrices C and D is

C#D := C1/2(C−1/2DC−1/2)1/2C1/2

Generalizes the geometric mean
√
cd of two positive numbers c and d .

▶ Equivalent Definition: Unique PD solution X∗ to the Riccati equation

XC−1X = D.

▶ C#D is the midpoint of the geodesic joining C and D on the manifold of PD
matrices.

▶ Fun facts:
C#D = D#C and (C#D)−1 = C−1#D−1.
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Multiplicative-Type Algorithm for PSDMF

Recall for fixed Wf ∈ SK+, f = 1, . . . ,F , we aim to solve

min
H
∥v −W(H)∥2 subject to H ∈ SK+

where W(H) = [⟨W1,H⟩, . . . , ⟨WF ,H⟩]⊤ ∈ RF .

Theorem (Soh and Varvitsiotis (2021))
The objective function ∥v −W(H)∥ is non-increasing under the update rule

H+ = M(W⊤v)M, where M =
(
[W⊤W](H)

)−1
#(H)

Furthermore, if initialized with a PD matrix, the subsequent iterates remain PD.

Reduces to Lee and Seung (1999) update in the diagonal case, i.e.,

h+ = h · W⊤v

W⊤Wv
.
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Multiplicative-Type Algorithm for PSDMF

Matrix Multiplicative Update (MMU) Algorithm (Soh and Varvitsiotis, 2021):

▶ Input: A matrix V ∈ RF×N
+ and parameter K ∈ N;

▶ Output {Wf }Ff=1, {Hn}Nn=1 ⊂ SK+ such that vfn ≈ ⟨Wf ,Hn⟩ for all f , n;

▶ While stopping criterion not satisfied, do

Wf ←− Nf (H⊤vf ,:)Nf where Nf =
(
[H⊤H](Wf )

)−1
#(Wf )

and

Hn ←−Mn(W⊤v:,n)Mn where Mn =
(
[W⊤W](Hn)

)−1
#(Hn).

Properties of MMU:
▶ Always operates in interior of PSD cone (no projection needed);
▶ Geometric interpretation of trajectory;
▶ Recovers classical MU (Lee and Seung, 1999) if matrices are diagonal.
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Proof Idea

▶ Write down candidate auxiliary function inspired by Taylor’s theorem;

▶ Show it dominates square loss, this reduces to

M⊗M−W⊤W ≽ 0,

where M =
(
[W⊤W](H)

)−1
#(H) is the matrix geometric mean;

▶ Pre-multiply with H−1/2, reduces to H = I;

▶ Apply Cauchy–Schwarz inequality

Tr(X2)Tr(Y2) ≥ Tr(XY)2

and a consequence of Lieb’s concavity theorem (Lieb, 1973)(∑
i

X
1/2
i

)
⊗
(∑

i

X
1/2
i

)
≼

(∑
i

Xi

)1/2

⊗
(∑

i

Xi

)1/2

.
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Concluding Remarks for PSDMF

▶ PSDMF (Gouveia et al., 2013; Fiorini et al., 2012; Vandaele et al., 2018) is a
generalization of NMF

(PSDMF) vfn = ⟨Wf ,Hn⟩, Wf ,Hn ≽ 0,

(NMF) vfn = ⟨wf ,hn⟩, wf ,hn ≥ 0.

▶ Can use signal processing primitives such as phase retrieval and affine rank
minimization within an alternating minimzation framework to find {Wf } and
{Hn} (Lahat et al., 2021);

▶ Even better, use majorization-minimization (MM) in the space of PD
matrices (Soh and Varvitsiotis, 2021);

▶ Other extensions to symmetric cones, including SOCPs.
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