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Generalities
Matrix factorization models
Nonnegative matrix factorization (NMF)

Optimization for NMF
Measures of fit
Majorization-minimization
Other algorithms
Regularized NMF
Common regularizers
Examples in imaging
Extensions of NMF (Part Il by Vincent)
Nonnegative rank selection by automatic relevance determination
Distributionally robust nonnegative matrix factorization
NMF in ranking models and sport analytics
PSDMF and links with phase retrieval and affine rank minimization
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

Data often available in matrix form.
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Matrix factorization models

= dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

data X dictionary W activations H
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Matrix factorization models

= dictionary learning
low-rank approximation
factor analysis
latent semantic analysis
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Matrix factorization models

for dimensionality reduction (coding, low-dimensional embedding)
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Matrix factorization models

for unmixing (source separation, latent topic discovery)
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Matrix factorization models

for interpolation (collaborative filtering, image inpainting)
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Matrix factorization models

» simple generative & interpretable models, popular in unsupervised settings.
» used in many fields for a long time:

>

vV Y vV VvV VY

Principal component analysis PCA (Pearson, 1901)

Factor analysis (Spearman, 1904)

Latent semantic analysis LSA (Deerwester et al., 1988)
Independent component analysis ICA (Comon, 1994)
Nonnegative matrix factorization NMF (Lee & Seung, 1999)
Latent Dirichlet allocation LDA (Blei et al., 2003)

Sparse dictionary learning, e.g., K-SVD (Aharon et al., 2006)

» active topics:

>

>
>
>
>

design of nonconvex optimization algorithms with proven convergence

landscape analysis, search for global optima

conditions for identifiability

rank selection

probabilistic models & statistical approaches (e.g., integer-valued or binary data)
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Nonnegative matrix factorization
U
Q .

N samples \]

A

F features
<
N

v

» data V and factors W, H have nonnegative entries.

» nonnegativity of W ensures interpretability of the dictionary, because patterns
wy and samples v,, belong to the same space.

» nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by (Paatero and Tapper, 1994), landmark Nature paper by (Lee and Seung, 1999)
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PCA dictionary with K = 25

red pixels indicate negative values
15/56



NMF dictionary with K = 25
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experiment reproduced from (Lee and Seung, 1999)
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NMF for latent semantic analysis

(Lee and Seung, 1999; Hofmann, 1999)

court president
government | served
council governor
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. constitutional | congress
Encyclopedia entry: 9

'Constitution of the
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president (148) flowers disease
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power (120) plant glands
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constitution (81) flower symptoms
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pain
infection |
~ X
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reproduced from (Lee and Seung, 1999)
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NMF for audio spectral unmixing

(Smaragdis and Brown, 2003)
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reproduced from (Smaragdis, 2013)
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NMF for hyperspectral unmixing

(Berry, Browne, Langyville, Pauca, and Plemmons, 2007)
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reproduced from (Bioucas-Dias et al., 2012)
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Optimization for NMF
Measures of fit
Majorization-minimization
Other algorithms
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NMF as a constrained minimization problem

Minimize a measure of fit between V and WH, subject to nonnegativity:

whing D(VIWH) = Zd V]| [WH] 7).

where d(x|y) is a scalar cost function, e.g.,

squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)
Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)
Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)

>
>

>

» a-divergence (Cichocki et al., 2008)

» [-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

» Bregman divergences (Dhillon and Sra, 2005)

» and more in (Yang and Oja, 2011)

Regularization terms often added to D(V|WH) for sparsity, smoothness, etc.

Nonconvex problem.
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Probabilistic models

> Let V ~ p(V|WH) such that

» E[V|WH] = WH

> p(VIWH) = [T, p(vin [WH]1)
» then the following correspondences apply with

D(V|WH) = — log p(V|WH) + cst

data support \ distribution/noise \ divergence \ examples ‘
| real-valued | additive Gaussian | quadratic loss | many \
integer multinomial* weighted KL word counts
integer Poisson generalized KL photon counts
. multiplicative .
nonnegative P Itakura-Saito spectrogram
Gamma

enerall . . eneralizes
generatly Tweedie [B-divergence generatiz

nonnegative

above models

*conditional independence over f does not apply
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The [-divergence

A popular measure of fit in NMF (Basu et al., 1998; Cichocki and Amari, 2010)

sy (K +(B-1)y" —Bxy®™) BEeR{0,1)
wr | FED ’
ds(xly) = x log %+ (y — x) B=1
§ — Iog§ -1 5=0
Special cases:
» squared Euclidean distance / quadratic loss (8 = 2)

» generalized Kullback-Leibler (KL) divergence (8 = 1)
> ltakura-Saito (IS) divergence (8 = 0)

Properties:

» Homogeneity: dg(A\x|\y) = M ds(x|y)

> ds(x|y) is a convex function of y for 1 < g <2
» Bregman divergence
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d(x=1ly)
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d(x=1ly)

—— B =2 (Euc)
—p=1(KL)
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A common NMF algorithm design: alternating methods

Block-coordinate update of H given W(=1) and W given H().
Updates of W and H equivalent by transposition:

v

v

Va2WH<=V ~H'WT

v

Objective function separable in the columns of H or the rows of W:

D(V|WH) = Z D(v,|Wh,)

v

Essentially left with nonnegative linear regression:

. def
min C(h) = D(v|Wh)

Numerous references in the image restoration literature, e.g., (Richardson, 1972;
Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)

Block-descent algorithm, nonconvex problem, initialization is an issue.
29/56



Majorization-minimization (MM)

Build G(h|h) such that G(h|h) > C(h) and G(h|h) = C(h).
Optimize (iteratively) G(hlh) instead of C(h).
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Majorization-minimization (MM)
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Majorization-minimization (MM)

Build G(h|h) such that G(h|h) > C(h) and G(h|h) = C(h).
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Majorization-minimization (MM)

» Finding a good & workable local majorization is the crucial point.
» Treating convex and concave terms separately with Jensen and tangent
inequalities usually works. E.g.:
vr
Cs(h) = | > ———
(h) zf: >k Wachi

+ + cst

Yer(me)
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Majorization-minimization (MM)

» Finding a good & workable local majorization is the crucial point.

» Treating convex and concave terms separately with Jensen and tangent
inequalities usually works. E.g.:

Vf
Cs(h) = = | + + cst
s(h) [zf: >k Wachi

Yer(me)

» In most cases, leads to nonnegativity-preserving multiplicative algorithms:
. (v, cm))’
hk = hk %
Vi C(h)

Vi, C(h) = V;’k C(h) — V}, C(h) and the two summands are nonnegative.

if Vi, C(h) > 0, ratio of summands < 1 and h, decreases.
> ~ is a divergence-specific scalar exponent.

» Details in (Nakano et al., 2010; Févotte and Idier, 2011; Yang and Oja, 2011)

v

v
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Example: derivation for the ltakura-Saito divergence

> IS divergence (8 = 0)
X X
dis(x|y) = — —log = — 1
y y

> Nonnegative linear regression with the IS divergence
Ln>|n Gs(h Z dis(vr|[Why)

Ci(h) (convex) G, (h) (concave)

+cst
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Example: derivation for the ltakura-Saito divergence

» Majorization of Cy(h) with Jensen's inequality.
Let f(x) be a convex function and A € R with >, A = 1. Then:

£, i) <D, Mef ().

» Leth e ]Rff be the current estimate, ¥ = Wh be the current approximation and

Wi hi Wi hi
Ay = —— = = (note that A = 1) .
i 7 Zj wily Zk fk

» Then, by convexity of f(x) = x~1, we may write:
G =3 vi (3, wache) =32 v (30, a2
isth) =) vr  Wwihe ) = f v
<Y v N =3 Wf"fl— Gy (h|h)
= L T wahy f 2 hy ’
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Example: derivation for the ltakura-Saito divergence

» Majorization of C,(h) with the tangent inequality.
Let g(h) be a concave function then:

g(h) <g(h)+Vg Z[Vg ) khi + cst.

> Given Gy(h) =)/ log (>, wachi), we have:

Wik
f\7f.

[VG ()] = Vi Go(h) =
» Finally, we may majorize Cy(h) with:

Go(hlh) = >~ WV—Thk + cst.
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Example: derivation for the ltakura-Saito divergence

> In the end, we may majorize Gis(h) with:

G(h|h) = Gy(h|h) + Gy(h|h) + cst
Vf 772
= Z Wik
fk

~2 h
» Smooth, convex and separable majorizer. Easily minimized by cancelling its
gradient, leading to the MM-based multiplicative update

(3 wave[Wh] 2
hk — hk —..,71
> r wi[Wh;

—hk + cst.

» Algorithm known from (Cao et al., 1999). The % exponent can be dropped using
majorization-equalization (Févotte and Idier, 2011).
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The multiplicative updates (MU) for NMF with S-divergence

» Alternating updates of W and H.
» In standard practice, only one MM update applied to W and H, rather than

vV v v Y

fully solving subproblems minw>o D(V|WH) and miny D(V|WH).
Leads to a valid descent algorithm with multiplicative updates given by:

W7 [(WH)- (-2 .v]\
WT [WH]-(5-1) )
[(WH) =2 y]HT\ ")
WHGTHT )

H<—H.<

W<—W.(

Very straightforward implementation, no hyperparameters!
Nonnegativity is automatically preserved given positive initializations.
Linear complexity per iteration.

In practice, minimizing D(V + ¢|WH + ¢) prevents from numerical issues.

36/56



Convergence of the iterates

» By design, we have convergence of the objective values C(W,H) = D(V|WH).
» What about the iterates ? Only partial answers so far.

» A theoretical challenge arises from the lack of coercivity of the objective:
[IW]| or [|H|| = o0 & C(W,H) — oo.
» Due to the scale indeterminacy: C(WA™!, AH) = C(W, H), with A — 0.

Possible remedies (modified problems)
1) Impose W > ¢, H > € (Takahashi et al., 2018; Hien and Gillis, 2021).
2) Slightly change the objective function to ensure coercivity (Zhao and Tan, 2018):

C(W,H) = D(V|WH) + ¢[|W[}; + ¢|[H]}1

MM results in adding € at the denominator of the multiplicative updates.
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Selecting (3 by matrix completion

(Févotte and Dobigeon, 2015)

v

Data: two unfolded hyperspectral cubes, F ~ 150, N =50 x 50

> Auviris instrument over Moffett Field (CA), lake, soil & vegetation.
» Hyspex/Madonna instrument over Villelongue (FR), forested area.

a percentage of the pixels is randomly removed.

W and H estimated from observed pixels (simple modification of MU).

>
>

» missing pixels are reconstructed from V = WH.
» K =3 (~ ground truth) and various values of 3.
>

evaluation using the average spectral angle mapper (aSAM):

Vi, Un)
aSAM(V) acos ( ! )
V) Z TvalToal
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Selecting (3 by matrix completion

(Févotte and Dobigeon, 2015)

MOFFETT MADONNA
0.4 0.034

0.032

-1 0 1 2 3 -1 0 1 2 3
beta beta

Recommended value 8 = 1.5 for these datasets
(compromise between Poisson and additive Gaussian noise). "



Other alternating optimization methods

» MM-based multiplicative updates are a simple and competitive choice for many
divergences (beyond S-divergences).

» More efficient options have been proposed for specific measures of fit, see
books by Cichocki et al. (2009); Gillis (2020)

Quadratic loss (selection)

» Active-set methods (Kim and Park, 2011)

» Hierarchical alternating LS (Cichocki et al., 2007; Gillis and Glineur, 2012)
» Proximal gradient descent (Lin, 2007; Guan et al., 2012; Bolte et al., 2014)
» ADMM (Sun and Févotte, 2014; Huang et al., 2016)

Kullback-Leibler divergence (selection)

» Second-order coordinate descent methods (Hsieh and Dhillon, 2011)
» Hybrid Newton-type algorithms with line search and MU (Hien and Gillis, 2021)
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Non-alternating methods (joint optimization)

» Optimize C(W,H) = D(V|W, H) jointly in W and H.
» Exciting line of research, driven by recent results in non-convex optimization.
Possibly better optima and lower complexity.
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Non-alternating methods (joint optimization)

» Optimize C(W,H) = D(V|W, H) jointly in W and H.

» Exciting line of research, driven by recent results in non-convex optimization.
Possibly better optima and lower complexity.

1) Proximal gradient algorithms with global smoothness constant (~Lipschitz) for
the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).
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Non-alternating methods (joint optimization)

» Optimize C(W,H) = D(V|W, H) jointly in W and H.

» Exciting line of research, driven by recent results in non-convex optimization.
Possibly better optima and lower complexity.

1) Proximal gradient algorithms with global smoothness constant (~Lipschitz) for
the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).

2) Joint MM algorithm for the 3-divergence (Marmin, Goulart, and Févotte, 2021):
> Global majorizer constructed using Jensen and tangent inequalities:
C(W,H) < G(W,H|W, H)
COW, A1) = G(W, A|W, F1)
> Global minimizer of G not available in closed form. G non-convex.

» Alternate minimization of G leads to closed-form updates and new multiplicative
rules. Important computational savings for some values of 3 (see paper).
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Non-alternating methods (joint optimization)

» Optimize C(W,H) = D(V|W, H) jointly in W and H.
» Exciting line of research, driven by recent results in non-convex optimization.
Possibly better optima and lower complexity.

1) Proximal gradient algorithms with global smoothness constant (~Lipschitz) for
the quadratic loss (Rakotomamonjy, 2013; Mukkamala and Ochs, 2019).

2) Joint MM algorithm for the 3-divergence (Marmin, Goulart, and Févotte, 2021):
> Global majorizer constructed using Jensen and tangent inequalities:

C(W, H) < G(W, HW, i)
COW, A = G(W, ANV, A1)
» Global minimizer of G not available in closed form. G non-convex.

» Alternate minimization of G leads to closed-form updates and new multiplicative
rules. Important computational savings for some values of 3 (see paper).

3) Second-order method for 5-NMF based on efficient Hessian approximations and
tricks to maintain semidefinite positivity (Vandecappelle et al., 2020).
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Large-scale NMF

Online NMF

» Large number of samples N >> F.

» Update W as samples v, become available.
» Vectors h,, act as latent variables, minimize

N
C(W) = " min D(vo|Wh,)
n:1 n—_

> Solved with online MM (Lefévre et al., 2011b; Mairal, 2015; Zhao et al., 2017)

Stochastic NMF
> Large F and N.
» Online NMF with stochastic subsampling:

min D(va[Z]|WIZ, ]hn)

where 7 is a random set of indices (Mensch et al., 2018).
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Regularized NMF
Common regularizers
Examples in imaging
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Regularized NMF

Induce prior information or desired structure on H (or W) using penalty terms:

v

C(W, H) = D(V|WH) + S(H)

v

MM algorithms are easily adapted to that setting:

D(V|WH) < G(H|A, W)

v

Only the minimization step is changed.

v

May however become intractable; sometimes S(H) needs to be majorized itself.

v

Similar to adjusting the proximal operator in proximal gradient descent.
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Regularized NMF

Induce prior information or desired structure on H (or W) using penalty terms:

v

C(W, H) = D(V|WH) + S(H)

v

MM algorithms are easily adapted to that setting:

D(V|WH) + S(H) < G(H|H, W) + S(H)

v

Only the minimization step is changed.

v

May however become intractable; sometimes S(H) needs to be majorized itself.

v

Similar to adjusting the proximal operator in proximal gradient descent.
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>

vV vV.v VvV Y

Promote zeros in H (or W), e.g,

S(H) = |H[l1 = an hiny,  S(H) = an log(hn + €)

Possibly with some group structure, e.g., cancel some rows of H (see Part II).
Vast literature! Seminal paper by Hoyer (2004).

Need to control ||[W]|| to avoid degenerate solutions ||W|| — oo, |[H|| — 0.
Because C(WA™!,AH) = D(V|WH) + S(AH), S(-) can be made arbitrary small.
A common approach:

amin C(W,H) s.t. Vk,|lwg| =1

» Change of variable (Eggert and Kérner, 2004; Lefévre et al., 2011a; Le Roux et al., 2015)
> Lagrangian method (Leplat et al., 2021)
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Impose temporal or spatial regularization, e.g.,

S(H)=>_, d(hialhn-1))

> Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)
» Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

dynamical model

coccces
Q000000

correlated data

cocecoe (00 ‘
0000000 (o0
XXX I
0000000 (o0
Q000000 CHC)
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Impose temporal or spatial regularization, e.g.,

S(H)=>_, d(hialhn-1))

> Least squares penalization (Virtanen, 2007; Essid and Févotte, 2013)
» Gamma Markov chains (Smaragdis et al., 2014; Filstroff et al., 2021)

Baseline (unpenalized IS-NMF)

bl el

Regularized (A = 1)

MJ\AMW

Regularized (A = 10)

ol

Regularized (A = 100

3300 3400 3500 3600 3700 3800

One row of H with increasing smoothness (Févotte, 2011)
46/56



Other common regularizers

» Orthogonal NMF: HH™ =1.
Essentially nonnegative clustering (Ding et al., 2006).
> Projective NMF: H=WTV.
Essentially nonnegative PCA (Yang and Oja, 2010).
» Symmetric NMF: H=WT.
Popular in graph clustering (Kuang et al., 2012; Huang et al., 2013).
» Separable NMF: W is a subset of columns of V.
Very active research topic! (Donoho and Stodden, 2004; Arora et al., 2016)
» Archetypal NMF: W belongs to the column-range of V.
A relaxation of separable NMF (Ding et al., 2010; Chen et al., 2014).

» Minimum-volume NMF: penalize the aperture of W.
Very active research topic! (Miao and Qi, 2007; Chan et al., 2009)

47/56



Robust NMF for nonlinear hyperspectral unmixing

(Févotte and Dobigeon, 2015)

» Variants of the linear mixing model account for “non-linear” effects:
v, ~Wh, +r,

» Often, r, has a parametric form, e.g., linear combination of quadratic
components {wy @ w;}4; (Nascimento and Bioucas-Dias, 2009; Fan et al., 2009;
Altmann et al., 2012)

» Nonlinear effects usually affect few pixels only.
» We treat them as non-parametric sparse outliers.
min Dg(V|WH+R)+/\”RH271
W,H,R>0
where ||R||21 = ZLI |[ra]l2 induces sparsity at group level.
> A form of robust NMF (Candes et al., 2009)
» Optimized with majorization-minimization.
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Robust NMF for nonlinear hyperspectral unmixing

(Févotte and Dobigeon, 2015)

Moffett Field data

reproduced from (Dobigeon, 2007)
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Robust NMF for nonlinear hyperspectral unmixing

(Févotte and Dobigeon, 2015)

Unmixing results

spectral endmembers & activation maps outlier energy {||ral|}n
(red: 8 =1, black: 8 = 2) B=1

Vegetation Water Soil

Outlier term captures specific water/soil interactions.
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Robust NMF for nonlinear hyperspectral unmixing

(Févotte and Dobigeon, 2015)

Villelongue/Madonna data (forested area)
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Robust NMF for nonlinear hyperspectral unmixing

(Févotte and Dobigeon, 2015)

Unmixing results

spectral endmembers & activation maps outlier energy {||rnl|}n
(red: 8 =1, black: 8 = 2) B=1)

Chesnut tree Oak tree Endm. #3

Outlier term seems to capture patterns due to sensor miscalibration.
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Factor analysis in dynamical PET

(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

» 3D functional imaging

» Observe the temporal evolution of the brain activity after injecting a radiotracer
(biomarker of a specific compound).

> v, is the time-activity curve (TAC) in voxel n.

» Neuroimaging: mixed contributions of 4 TAC signatures in each voxel.

coincidence
processing unit r sGra
' i { matter
J | [ Brons
st mods data
-

G
ET /(=
prst——— 1 | White

w matter
image reconstrucion

Dynamic positron emission tomography PET voxel decomposition

/ PET scanner
/" inaction

reproduced from (Cavalcanti, 2018)
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Factor analysis in dynamical PET

(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Mixing model
» the specific-binding TAC signature varies in space:

K
Vo & Wi+ 0,]hin + Y Wihi
k=2
K
~ [wy + Db,lhi, + > Wichin
k=2

~ Wh, + h;, Db,
» D is fixed and pre-trained using labeled or simulated data.

Estimation

min  Ds(V|WH + 1h; ® DB) + A||B| 2.
W,H,B>0

Optimized with majorization-minimization.
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Factor analysis in dynamical PET

(Cavalcanti, Oberlin, Dobigeon, Févotte, Stute, Ribeiro, and Tauber, 2019)

Unmixing results

> real dynamic PET image of a stroke subject injected with a tracer for
neuroinflammation.

» MRI ground-truth region of the stroke.

Stroke(MRI)  (3=0)-A, (B=1)-A, (B=2)-A, (8=0)-B (B=1B _ (5=2)-B

el 1 1 1 40

o e o ot 30 30 30

05 05 05 05 1 B 1 B & N2
10 10 10

0 0 0 0
mt 1 1 1 40 40 4
30 30 30
05 05 05 05 20 20 20

. . .

10 10 10

0 0 0 0 0
mt 1 1 40 4 4
30 30 30

c L3 [

05 05 05 05 20 20 20
10 10 10

0 0 0 0 0 0 0

Fig.: Specific-binding activation (h1,) and variability maps (||bn||2,1)

in three different planes and for three values of 3
55/56



End of Part |

Half-time conclusions

» NMF has become a popular data processing tool over the last 20 years.

v

Very suited to unmixing problems in unsupervised settings.

v

Exciting non-convex optimization problem with non-Euclidean measures of fit.
MM is a versatile algorithmic framework for NMF.

» Simple multiplicative algorithms for the -divergence and beyond.
» Can be adapted to regularized NMF and variants.
> More efficient algorithms exist for the quadratic loss.

v

Funding acknowledgement: European Research Council, National Research Fondation Singapore,
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Nonnegative Rank Selection by Automatic Relevance

Determination (ARD)

Tan and Févotte (2013)

» Recall that in NMF, one is given a data matrix V € Rf_XN and tries to find a

dictionary matrix W € RF*¥ and coefficient matrix H € RX*" such that

A\

Usually solved using a constrained minimization problem
F

WmdgoD (V| WH) = ;;d Vs | [WH]s).

» How to find the common/latent dimension K?

» If K is too large = Overfitting! K too small = Poor fit to model!

» Solve this by automatic relevance determination (Bishop, 1999; Tipping, 2001)
>

Natural extension of regularization ideas discussed by Cédric.
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» Assign each column of W and each row of H priors

| | - h, -
W= |w; wy ... wg H= .
— he —
» Tie the k*® column wy and the k*® row h, together through a common
relevance weight A, > 0.

» Maintain nonnegativity by choosing nonnegative priors, e.g.,
» Half Gaussian, i.e.,

p(wa | Ax) = (%)1/2 exp ( - 2W7i) pP(hin | Ak) = (%)1/2 exp ( — :/2(’;)

> Exponential

1 Wik 1 hin
plunc | M) A oP Ak Plhia | M) e P Ak
» Both these distributions are supported on R, .
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Half Gaussian and Exponential
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Figure: Half Gaussian and Exponential Distributions
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Probabilistic Model for ARD in NMF

I < hy
+.+
Wk

\) w1
» The k'™ component can be removed without compromising data fidelity.

» )\, is a common variance-like quantity.

» When Ax | 0, ||wg| and ||h.|| both tend to O.
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» Prior on common variance-like parameter Ak is inverse-Gamma

b
Meiab) = 2 (=)
P ) = e e (- 3
where a and b are the shape and scale hyperparameters, respectively.
» Set a and b to be the same for all k.

» The inverse-Gamma prior is chosen because it is conjugate to the

variance-parameter in the Half Gaussian and the inverse rate parameter in the
Exponential.

» Leads to closed-form updates.

» Assume independence

p(X; a,b) = Hp()\kab
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Probabilistic Model for ARD in NMF
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Probabilistic Model for ARD in NMF

.

v

» V = [vg] are observed;
» a b are hyperparameters;
» Want to learn W = [wy,] and H = [hg,] and implicitly K|, i.e.,

K = |{k € [K] : Ak > threshold}|.

9/64



Objective function for ARD in NMF

» Combining the prior and likelihood, the objective function (log-posterior) can
be written as

C(W,H,X\) = —logp(W,H, X | V)
1

3 f(wk) + f(hy) + b) + clog .
k

K
Ds(V [ WH) + >
k=1

ﬂ\*—‘
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Objective function for ARD in NMF

» Combining the prior and likelihood, the objective function (log-posterior) can
be written as

C(W7 HaA) = - |ng(W, H7>‘ | V)

K
1
< p Dp(V | WH) + >~ = (f(wy) + f(hy) + b) + clog As.
» Constant ¢ is the dispersion parameter (of the Tweedie distribution):
> (3 =2: Gaussian distribution and ¢ = o
> 3 = 1: Poisson distribution and ¢ = 1;
» 3 =0: Gamma distribution and ¢ = 1/a where « is the shape parameter;

» Constant ¢ and function f depend on the likelihood model:
> Half Gaussian model: f(x) = 1[|x|*> and c = (F + N)/2+a+1;
» Exponent model: f(x) =|x|iandc=F+N+a+1

» This cost has connections to reweighted ¢; minimization (Candés et al., 2008)
and group LASSO (Yuan and Lin, 2007).

10/64



Majorization-Minimization Algorithms for /,-ARD-NMF

» Using the MM ideas discussed by Cédric, we can derive updates for W and H:

WT[(WH).(B,Q) V] &(8)
WT[(WH)](B-1) 4 ¢H /repmat(A, 1, N))

[(WH)(3=2) . V]HT £(8)
We— W <[(WH)]'(51)HT + W /repmat(, F, 1))

H<—H‘<

where 1/(3 ﬁ) B<2
5(5)‘{ (5-1) §>2 °
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» Using the MM ideas discussed by Cédric, we can derive updates for W and H:

WT[(WH).(B,Q) V] &(8)
WT[(WH)](B-1) 4 ¢H /repmat(A, 1, N))

[(WH)(3=2) . V]HT £(8)
We— W ([(WH)]'(ﬁl)HT + W /repmat(, F, 1))

H<—H-<

where 1/(3 ﬁ) B<2
5(5)—{1/(,3_1) 552

» The update for A is

sllwiel® + 3lAe]* + b
C

Vk e [K].
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Estimating Hyperparameter b via the Method of Moments

» By the law of large numbers

X 1 R
vy = W ; Verg & ]E[an] = E[an] = ;E[Wfkhknl
\n
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» By the law of large numbers
A 1 .
v = £y ; verg = Elvam] = E[Vg] = ;E[Wﬂ(hk”].
,n

» Can compute E[Vg] = >, E[wghin] in closed-form for the Half Gaussian and
Exponential models using their moments:

Half Gaussian
E[Ofn] =
Exponential
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Estimating Hyperparameter b via the Method of Moments

» By the law of large numbers

X 1 .
v = £y ; Ve &= Elva] = E[Vg] = %:E[Wfkhk,,].
,n

» Can compute E[Vg] = >, E[wghin] in closed-form for the Half Gaussian and
Exponential models using their moments:
2Kb
m(a—1)
Kb?
(a—1)(a—-2)

» Can “invert” these relations to yield

Half Gaussian
E[Ofn] =
Exponential

ﬂ'(a - 1)[2\/
2K

\/ (a—1)(a—2)pv
K

Half Gaussian

o
Il

Exponential
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Swimmer Decomposition Results

8 data samples (among 256)
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Audio Decomposition Results
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Audio Decomposition Results

IS-NMF ARD IS-NMF
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0 0
0 5 10 15 20 0 5 10 15 20

Figure: Histograms of standard deviation values of all K = 18 components produced by
Itakura—Saito NMF and ARD ltakura—Saito NMF (with ¢» penalization). ARD IS-NMF
only retains the 6 “right” components
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Audio Decomposition Results

1-TOL = 1.51e+04 — STD = 4.75e-02 6 - TOL = 4.77e+01 — STD = 2.48e-03
2-TOL =8.73e+03 - STD = 3.31e-02 7 - TOL = 2.46e-02 — STD = 2.00e-05
3-TOL =3.91e+03 - STD = 2.05e-02 8 - TOL = 2.35e-02 — STD = 2.12e-05
4 - TOL = 2.57e+08 - STD = 1.39e-02 9 - TOL = 2.23e-02 - STD = 1.85e-05
B O
> »—
5-TOL =1.01e+03 - STD = 8.37e-03 10 - TOL = 2.09e-02 — STD = 2.04e-05
) e } \ ) A
8 T 1§ v r T

Figure: First 4 components extract the individual notes and the next 2 components
extract the sound of hammer hitting the strings and the sound produced by the sustain
pedal
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Concluding Remarks from using ARD on NMF

» Introduced an Automatic Relevance Determination framework for learning the
common/latent dimension K in NMF.
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Concluding Remarks from using ARD on NMF

» Introduced an Automatic Relevance Determination framework for learning the
common/latent dimension K in NMF.

» Simple, cheap and intuitive.

» Since its publication, ARD NMF (Tan and Févotte, 2013) has been used
successfully in biology and genomics, among other scientific fields, e.g.,

ML Comprehensive molecular characterization of muscle-invasive bladder

cancer
AG Robertson, J Kim, H Al-Ahmadie, J Bellmunt, G Guo... - Cell, 2017 - Elsevier
We report a ive analysis of 412 il ive bladder cancers characterized

by multiple TCGA analytical platforms. Fifty-eight genes were significantly mutated, and the ...
¥r Save 99 Cite Cited by 1453 Related articles All 24 versions

L Comprehensive and integrative genomic characterization of hepatocellular
carcinoma

AAlly, M Balasundaram, R Carlsen, E Chuah, A Clarke... - Cell, 2017 - Elsevier

Liver cancer has the second highest worldwide cancer mortality rate and has limited

therapeutic options. We analyzed 363 hepatocellular carcinoma (HCC) cases by whole ...

¥¢ Save 99 Cite Cited by 1153 Related articles Al 17 versions

L) The repertoire of mutational signatures in human cancer
LB Alexandrov, J Kim, NJ Haradhvala, MN Huang... - Nature, 2020 - nature.com

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of
which generates a characteristic mutational signature 1. Here, as part of the Pan-Cancer ...
Y¢ Save P9 Cite Cited by 1073 Related articles All 19 versions
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Distributionally robust nonnegative matrix factorization
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Distributionally Robust Nonnegative Matrix Factorization

(Gillis, Hien, Leplat, and Tan, 2022)
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» If v, = [WH], 4 Gaussian noise (8 = 2), then
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Distributionally Robust Nonnegative Matrix Factorization

(Gillis, Hien, Leplat, and Tan, 2022)

» The parameter 3 in Dg controls the noise statistics on WH (Tweedie distn);
» If v, = [WH], 4 Gaussian noise (8 = 2), then

c 1 2
- |0g P(an | [WH]fn) = ?([WH]fn - an) y

then maximizing the log-likelihood = minimizing D, (Frobenius-NMF).

» If vs ~ Poisson([WH]z,) (8 = 1), then

- lOg P(an | [WH]fn) = Vfn |0g [WH]fm

[WH]
then maximizing the log-likelihood = minimizing D; (KL-NMF).
» If v ~ Gamma(a, [WH]s/a) (8 = 0), then

B Vin _ Vin
~log p(van | IWHI) = i = 18 iy,

then maximizing the log-likelihood = minimizing Dy (IS-NMF).

7]_7
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Applications, MO-NMF and DR-NMF
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Applications, MO-NMF and DR-NMF

» Audio signal processing (Févotte et al., 2009; Virtanen, 2007): g € {0,1}
» Sparse document datasets (Chi and Kolda, 2012): g € {1,2}

» How to choose an appropriate § when given a new task? Say we only consider
B € Q where Q C R is a finite set, e.g., 2 = {0,1,2}.

» Multi-Objective NMF (MO-NMF)
wiin {Ds(V. WH)} 5
which is solved for a given probability vector A = (Ag)geq using
Wmin [DQ(V WH) =) " AsDp(V, WH)]
BEQ
» Distributionally Robust NMF (DR-NMF)

er:no max Dg(V,WH)
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Scaling of the Objective

» For the family of S-divergences,
Ds(aV,aWH) = o’ Dg(V,WH)  Va > 0.
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Scaling of the Objective

» For the family of S-divergences,
Ds(aV,aWH) = o’ Dg(V,WH)  Va > 0.

» Not desirable in practice as datasets are not properly scaled.

» Compute an approximate solution

(W3, Hg) ~ argmin Dg(V,WH) with error eg = Dg(V,WzHjg)
W,H>0

and define

— Ds(V, WH)

Dg(V,WH) = ” so that Dg(V,WszHg) = 1.

» Consider the optimization problem

.= = —
WrmgODQ(V,WH) where DQ(V,WH)_%AB%(V,WH).
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Multiplicative Update Algorithm

» Let f : RY — R be a differentiable function. Consider the general optimization
problem with nonnegativity constraints

min{f(x) : x> 0}.
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» Let f : RY — R be a differentiable function. Consider the general optimization
problem with nonnegativity constraints

min{f(x) : x> 0}.

> Rescaled gradient descent method (with rescaling matrix B)

xt =x— BVf(x)

> Say that Vf(x) = V4 f(x) — V_f(x) where V,f(x) > 0 and V_f(x) > 0.
> Taking Bjj = x;/[V4+f(x)];, we obtain

V_f(x)

. x] -
Xt =x— o (Vi f(x) = Vof(x)) =x- Vi f(x)

[V (x)]
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Multiplicative Update Algorithm

» Let f : RY — R be a differentiable function. Consider the general optimization
problem with nonnegativity constraints

min{f(x) : x> 0}.

> Rescaled gradient descent method (with rescaling matrix B)

xt =x— BVf(x)

> Say that Vf(x) = V4 f(x) — V_f(x) where V,f(x) > 0 and V_f(x) > 0.
> Taking Bjj = x;/[V4+f(x)];, we obtain

V_f(x)

. x] -
Xt =x— o (Vi f(x) = Vof(x)) =x- Vi f(x)

[V (x)]

» No tuning of step-sizes. If x > 0, then x* > 0 as well.
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Application of MU Algorithm to DR-NMF

» Recall that for a fixed probability vector A, we want to solve

L= —2 —
WrmgODQ(V,WH), where DQ(V,WH)—[;ZABDQ(V,WH).
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Application of MU Algorithm to DR-NMF

» Recall that for a fixed probability vector A, we want to solve

i = WH).
Whin Dqo(V,WH), where Dg(V,WH) [;2 AsDs(V, WH)

» Alternating minimization procedure: Minimize over H, then over W.
» For all 3,
VHDs(V,WH) = VH Ds(V,WH) — V" D5 (V, WH),
where VM means gradient w.r.t. H.
> After some tedious calculation,
VHDs(V,WH) = WT(WH) (®~1)  and
VHDy(V, WH) = W ((WH)#-2). v/},
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Application of MU Algorithm to DR-NMF

» Update H as follows:

ey, Ssen s (VAD(V, WH))

ZﬂeQ As (Vﬂ Da(V, WH)) '
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Application of MU Algorithm to DR-NMF

» Update H as follows:

Wt _H. Zseats (VHDg(V,WH))

Y sea A (VEDs(V, WH))

» Sometimes this may not result in a decrease in the objective, so we set v =1
and H] = H* and successively find 7 such that while

Dg(V,WHY) > Da(V, WH)

we reduce
¢

N2

and set
+ _ +
H =(1-~y)H+H".
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Application of MU Algorithm to DR-NMF

» Update H as follows:

Wt _H. Zseats (VHDg(V,WH))

Y sea A (VEDs(V, WH))

» Sometimes this may not result in a decrease in the objective, so we set v =1
and H] = H* and successively find 7 such that while

Dg(V,WHY) > Da(V, WH)

we reduce
¢

N2

and set
+ _ +
H =(1-~y)H+H".

» But this tweak of v is rarely needed.
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Algorithm for DR-NMF

» For fixed A, we have an MU algorithm to solve

in Do(V,WH h Do(V,WH) = AgDg(V,WH).
WTI—:;O Q( ’ )7 where Q( ) ) [;) B ﬂ( ) )
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Algorithm for DR-NMF

» For fixed A, we have an MU algorithm to solve

in Do(V,WH h Do(V,WH) = AgDg(V,WH).
WTI-:;O Q( ’ )7 where Q( ) ) [;) B ﬂ( ) )

» But we want to solve for W, H > 0 that minimizes

Dj(V,WH) = ApDa(V, WH).
max 5(V, WH) Azorrll\i)l(h:lgzn ooty )

» So we want to solve

i AgDg(V, WH
w’fﬂgmzoﬂiﬁlﬁ;&; sDs(V, )

which is a min-max optimization problem.

» There are dual subgradient methods to solve this with convergence guarantees,

but we found them to be slow.
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Frank—Wolfe-type Algorithm for DR-NMF

> Initialize A\g = 1/|Q| for all 5 € Q.
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Frank—Wolfe-type Algorithm for DR-NMF

> Initialize A\g = 1/|Q| for all 5 € Q.

» For each t = 1,2,..., we obtain H**1) using the MU algorithm with
W =W® and X = Al

> We obtain W) using the MU algorithm with H = H(tFD and A = A9,

> Let §* € arg maxgeq Eg(V,W(fH)H(Hl)) and
(0 _J 1 ifpg=p"
A ]5_{0 if B # B*.

Update
A = (1- Pt)A(t) + /’t)\gt)v

where p; = 1/t.

» This is a Frank-Wolfe-type algorithm (FW would use p; = 2/(t + 2)).
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Remarks on our Algorithm for DR-NMF

» Updates for W and H are meant to approximately minimize

—_ ()
(W, H) — Dg (V, WH)
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Remarks on our Algorithm for DR-NMF

» Updates for W and H are meant to approximately minimize

NG
(W,H) > Djy (V,WH)
» For the update of A, notice that for all 5 € Q
EB* (V, W(t+1)|.|(t+1)) > 55(\,’ W(t+1)H(t+1)),

. = . .
and since A — Dﬁ is linear, we have

A®) = arg max {EZ(V,W“H)H(HI)) tA>0,]|AL = 1} .
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Remarks on our Algorithm for DR-NMF

» Updates for W and H are meant to approximately minimize

—_ ()
(W, H) — Dg (V, WH)

» For the update of A, notice that for all 5 € Q
Eﬁ* (V, W(t+1)H(t+1)) > Eﬁ(v, W(t+1)H(t+1)),
and since A — 52 is linear, we have
A®) = arg max {EZ(V,W“H)H(HI)) tA>0,]|AL = 1} .

» The S*-divergence is given the most importance at the next iteration

» Forcing all S-divergences to decrease as well.
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Sparse Document Data Sets

» For sparse data sets, one often chooses 5 € Q = {1, 2}
» For sparse word-count datasets, Poisson noise is the most appropriate

» But say we do not know this, we can compare DR-NMF, KL-NMF and
Frobenius-NMF

> Use these NMF methods for clustering (topic modeling)

» Clustering accuracy

accuracy({Gi}_;) == min EZ |G C}(i)’
i=1

m:r]—=[r] ¥
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Sparse Docum Data Sets

dataset | number Clustering accuracy (%)
of classes | KL-NMF  Fro-NMF DR-NMF

NG20 20 50.15 17.78 27.60
NG3SIM 3 59.07 34.29 68.05
classic 4 65.53 49.21 58.98
ohscal 10 41.54 35.71 40.23
kib 6 54.40 73.50 62.35
hitech 6 41.03 48.28 41.68
reviews 5 78.10 45.24 75.33
sports 7 53.48 49.24 62.60
lal 6 70.69 45.47 66.67
la12 6 71.24 47.91 67.75
la2 6 70.34 51.58 68.62
trll 9 52.90 46.38 46.62
23 6 30.39 39.71 34.80
trdl 10 60.25 35.31 49.20
trd5 10 56.67 38.12 31.59
Average 57.05 43.85 53.47

Figure: Clustering accuracies of various methods
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Dense Time-Frequency Matrices of Audio Signals

» Use the data set piano_Mary
C

g ———

Ma-ry had a lit - tle lamb

N>
NN

Figure: Musical score of “Mary had a little lamb”. The notes are activated as follows:
Es, Da, G4, D4, E4, Es, Es.
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Dense Time-Frequency Matrices of Audio Signals

» Use the data set piano_Mary
C

N>
NN

Ma-ry had a lit - tle lamb
Figure: Musical score of “Mary had a little lamb”. The notes are activated as follows:
Es, Da, G4, D4, E4, Es, Es.
» Considered no added noise and adding Poisson noise to the music piece

> Tested in DR-NMF (with Q = {0,1}), IS-NMF (3 = 0) and KL-NMF (3 = 1)
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No Added Noise

----=IS error for IS-NMF

— =KL error for IS-NMF
IS error for KL-NMF

—KL error for KL-NMF

——1IS error for DR-NMF

—=—KL error for DR-NMF

Objective function values

0 10 20 30 40 50
Iterations

Figure: Evolution of scaled S-divergences
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No Added Noise

©

----=IS error for IS-NMF

— =KL error for IS-NMF
IS error for KL-NMF

—KL error for KL-NMF

——1IS error for DR-NMF

—=—KL error for DR-NMF

> o o N

Objective function values
w

0 10 20 30 40 50
Iterations

Figure: Evolution of scaled S-divergences

» DR-NMF is able to compute a model with low IS- and KL-error
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No Added Noise

----=IS error for IS-NMF

— =KL error for IS-NMF
IS error for KL-NMF

—KL error for KL-NMF

——1IS error for DR-NMF

—=—KL error for DR-NMF

Objective function values

0 10 20 30 40 50
Iterations

Figure: Evolution of scaled S-divergences

» DR-NMF is able to compute a model with low IS- and KL-error
» KL-NMF has IS-error 9 times that of IS-NMF
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Added Poisson Noise

IS-NMF KL-NMF DR-NMF

(VWG

Activations

0 2 4 0 2 4 0 2 4
Timels] Time|[s] Timels]

Figure: IS-NMF, KL-NMF, and DR-NMF with © = {0,1} in Poisson noise.
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Added Poisson Noise

IS-NMF KL-NMF DR-NMF

(VWG

Activations

0 2 4 0 2 4 0 2 4
Timels] Time|[s] Timels]

Figure: IS-NMF, KL-NMF, and DR-NMF with Q = {0, 1} in Poisson noise.

» Rows of H are recovered successfully.

» (, is activated once, D, twice and E4 four times.
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NMF in ranking models and sports analytics
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Using Nonnegative Matrix Factorization in Ranking Models for

Sports Analytics

(Xia, Tan, Filstroff, and Févotte, 2019)
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Using Nonnegative Matrix Factorization in Ranking Models for
Sports Analytics

(Xia, Tan, Filstroff, and Févotte, 2019)

| Roger Federer Novak Djokovic
Jhod Laver 3 Grand Slam 5 Grand Slam
— =
19605 2005 2006 2010 2011 2015 2016
—

Rafael Nadal
3 Grand Slam

Who is the greatest players
of all time?
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Using Nonnegative Matrix Factorization in Ranking Models for
Sports Analytics

(Xia, Tan, Filstroff, and Févotte, 2019)

Rod Laver Roger Federer Novak Djokovic

3 Grand Slam 5 Grand Slam
3 Grand Slam
1960s 2005 2006 2010 2011 2015 2016
——

Rafael Nadal
3 Grand Slam

Who is the greatest players
of all time?

Who is the greatest of all time (GOAT)?
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What could be a Pertinent Latent Variable?
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What could be a Pertinent Latent Variable?

Wimbledon Australian Open
Grass Outdoors Hard Outdoors

French Open US Open
Clay Outdoors Hard Outdoors
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Ranking Tennis Players with Latent Variables
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Ranking Tennis Players with Latent Variables

N

players

7] Rafal Nadal
Novak Djokovic
Roger Federer

Wimbledon
Australian Open
M French Open

tournaments
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Ranking Tennis Players with Latent Variables

N K H

players

* K

Novak Djokovic
Roger Federer

7] Rafal Nadal

Wimbledon
Australian Open

| |

I I

I I

M French Open , ,
: v ~ M| W | ! !

. ! !

I I

tournaments

Figure: The hybrid BTL-NMF Model
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Ranking Tennis Players with Latent Variables

N K H

players

* K

Novak Djokovic
Roger Federer

7] Rafal Nadal

Wimbledon
Australian Open

| |

I I

I I

M French Open , ,
: v ~ M| W | ! !

. ! !

I I

tournaments

Figure: The hybrid BTL-NMF Model

» Bradley—Terry—Luce (Bradley and Terry, 1952; Luce, 1959) ranking model:

. . Ami
Pr (player i beats player j | tournament m) = ﬁ
mi mj

» Ao Skill level of player i in tournament m.
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Data Collected and Likelihood Function

Output: W ~ (M x K) matrix
H ~ (K x N) matrix

GIVEN: D ~ M (N x N) matrices |

N

M tournaments K H
. K

N players

N
players

Number of times
player i beats player j
in tournament m

37/64



Data Collected and Likelihood Function

Output: W ~ (M x K) matrix
H ~ (K x N) matrix

GIVEN: D ~ M (N x N) matrices |

N players N
D= \M tournaments K H
@ K
N
players I M w
Likelihood Function
_ rpm
Number of times L(W7 H | D= {bu })
player i beats player j Iy (m)
in tournament m _ H H [WH]ml i
AL\ WHL - WHI,

Prob. i beats j in tourn. m

37/64



Objective Function to be Minimized

» Take the negative log of the likelihood to get the following objective function

argmin f(W,H | D) = —log L(W,H | D)
W,H>0

—argmlnz 37 b [~ log(IWH]mi) + log(IWH] i + [WH])]
W,H>0 [ — 1(i./)ePm

where P,, is the set of games that i and j played in tournament m.
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Objective Function to be Minimized

» Take the negative log of the likelihood to get the following objective function

argmin f(W,H | D) = —log L(W,H | D)
W,H>0

—argmlnz 37 b [~ log(IWH]mi) + log(IWH] i + [WH])]
W,H>0 [ — 1(i./)ePm

where P, is the set of games that / and j played in tournament m.
» Unfortunately, this objective function is not convex in (W, H).
» Majorization-Minimization (MM) comes to the rescue again!
» Main ideas: For any concave function g (tangent inequality),
g(y) < g(x) + Vg(x)"(y —x)

and Jensen's inequality for the convex function t — — log t.
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Majorization-Minimization Updates

» After some straightforward but tedious algebra, we can construct two auxiliary
functions u1 (W, W | H) and up(H, H | W) that majorize the objective function

f(W,H | D) = —log L(W,H | D).
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Majorization-Minimization Updates

» After some straightforward but tedious algebra, we can construct two auxiliary
functions u1 (W, W | H) and up(H, H | W) that majorize the objective function

f(W,H | D) = —log L(W,H | D).

» Implement

WD = arg min uy (W, W | H(®)
W>0

HE = arg min up(H, H® | W)
H>0
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Majorization-Minimization Updates

» Update for W:

> b (M) Wichi
(i.)EPm (WHlr

(m) hyi+hy;
> by L, WA,

(iJ)EPm

Wmk <—
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Majorization-Minimization Updates

» Update for W:

> b (M) Wichi
(i.)EPm (WHlr

(m) hyi+hy;
> by L, WA,

(iJ)EPm

Wmk <—

» Update for H:
Z Z b,(m) Wik i
m i er, | WHIm

(m) (m) Wi, ’
2 s, )

hk,' —
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Majorization-Minimization Updates

» Update for W:

Z b (m) kahkl

(m) hii+hyg
Z bi" W, T W,

(iJ)EPm

Wk <

» Update for H:
Z Z b’(m) kahk/
e

(m) (m) W, ’
%:j#(i%ep (bij + bj; )[WH]m,-+fWH]mj

hk,' —

» Simple, fuss-free updates.
» Used a few other hacks to ensure normalization and no divide by O errors.

» Under the right conditions, can prove convergence guarantees to “stationary
points” (Zhao and Tan, 2018).
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Data Collection

Australian Open
Roland Garros
Wimbledon

US Open

*

Rafael Nadal
Novak Djokovic
David Ferrer
Tomas Berdych

Indian Wells Masters
Madrid Open

4 Grand Slam + 10 Most Famous ATP tournaments

Roger Federer
Andy Murray

Miami Open
Monte-Carlo Masters
Pairs Masters

Italian Open
Canada Masters
Cincinnati Masters

Shanghai Masters
ATP_Finals

Fernando Verdasco
Philipp Kohlschreiber
Richard Gasquet
Gilles Simon

Stan Wawrinka
Jo-Wilfried Tsonga
Marin Cilic

Feliciano Lopez

John Isner

Nicolas Almagro

Juan Martin del Potro
Gael Monfils

Top 20 players who both Milos Raonic

Kei Nishikori

Have the highest number of participation
in the 14 tournaments from 2007-2017

n

Have the highest total number of matches
played from 2007-2017
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Data Collection

Name Rafael Novak  David  Tomas

Nadal Djokovic Ferrer  Berdych Federer
Rafael Nadal 0 0 0 1 3
Novak Djokovic 3 2 3
David Ferrer 0 0 0 0
Tomas Berdych 1 0 0 0. 0
Roger Federer 1 1 0 4 2
Andy Murray 1 2 1 1
Fernando Verdasco 1 0 0 0
Philipp Kohlschreib 0 0 0 0 0
Richard Gasquet, 0 0 0 0 0

Roger

Andy  Fernando Philipp Richard
Murray  Verdasco Kohlschreiber Gasquet

\

True zeros

Non-zero (bgn) = O,b}im) >0)

1 1 2 0
® 2 0 0
0 0 0 1
[ 1 1 1
2 0 0 0
o 1 0
1 o 0 0
0 0 0 0
© 0 0__ Zeros on the diagonal
\/ b = 0)
Missing data
(b3 = b = 0)
Male

Total Entries 14 x 20 x 20 = 5600

Number| Percentage
Non-zero 1024 18.30%
Zeros on the diagonal|| 280 5.00%
Missing data 3478 62.10%
True zeros 818 14.60% |
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Results on Tournaments for Men's Dataset

non-clay clay

Tournaments Row Normalization Column Normalization

Australian Open 5.77E-01 | 4.23E-01 1.15E-01 7.66E-02
French Open 3.44E-01 | 6.56E-01 €+ 8.66E-02 1.50E-01 :D

Wimbledon 6.43E-01 | 3.57E-01 6.73E-02 3.38E-02

US Open 5.07E-01 | 4.93E-01 4.62E-02 4.06E-02

Indian Wells Masters | 6.52E-01 3.48E-01 1.34E-01 6.50E-02

Madrid Open 3.02E-01 | |6.98E-01 ¢+ 6.43E-02 1.34E-01

‘ Miami Open 5.27E-01 | 4.73E-01 4.95E-02 4.02E-02

Monte-Carlo Masters | 1.68E-01 & 2.24E-02 1.01E-01

‘ Paris Masters 1.68E-01 & 1.29E-02 5.76E-02
Italian Open 0.00E-00 ¢+ 1.82E-104 1.36E-01
Canadian Open | [l0OER00] | 0.00E-00 | [1.28E-01 | 1.78E-152
Cincinnati Masters 523E-01 | 4.77E-01 1.13E-01 9.36E-02
Shanghai Masters 7.16E-01 | 2.84E-01 1.13E-01 4.07E-02
The ATP Finals 5.72E-01 | 4.28E-01 4.59E-02 3.11E-02

CRCNC),

Latent variable discovered to be “surface type”
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Results on Player Rankings by Latent Variable

non-clay clay

Players matrix H’ Total Matches

Hard Court player=——> |  Novak Djokovic 283

Clay player ——> Rafael Nadal 2.48E-02 241

Grass player ——> Roger Federer [SESH | 234602 229
Non-clay player — Andy Murray 757E-02 | 843E-03
Tomas Berdych 0.00E-00 | 3.02E-02
David Ferrer 6.26E-40 | 3.27E-02
Clay player ———> Stan Wawrinka 293E-55 | 4.08E-02
Jo-Wilfried Tsonga 3.36E-02 | 271E-03

Richard Gasquet 549E-03 | 141E-02 102

Juan Martin del Potro | 2.90E-02 | 1.43E-02 101

Marin Cilic 2.12E-02 0.00E-00 100

Fernando Verdasco 1.36E-02 | 8.79E-03 96

Kei Nishikori 7.07E-03 | 254E-02 94

Gilles Simon 1.32E-02 | 4.59E-03 83

Milos Raonic 1.45E-02 78

Philipp Kohlschreiber | 2.18E-06 76

John Isner 2.70E-03 78

Feliciano Lopez 143E-02 | 3.31E-03 75

Gael Monfils 3.86E-21 1.33E-02 70

Nicolas Almagro 6.48E-03 | 6.33E-06 60

Figure: Players rankings according to discovered latent variable — “surface type”
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Results on Player Rankings by Tournament

Tournament Novak Rafael Nadal Roger Federer Andy Murray Stan Wawrinka
Djokovic

Australian Open 2.16E-02 ‘ 1.54E-02 | 1.47E-02 | 9.13E-03 | 3.34E-03

French Open 139E-02- 143E-02 | 7.12E-03 | 411E-03 | 3.48E-03(5)
Wimbledon [2063E02] | 1.66E-02 1.20E-02 | 3.39E-03
US Open 1.17E-02 | 9.42E-03 | 7.38E-03 | 451F-03 | 2.13E-03
Indian Wells Masters 1.42E-02 | 1.68E-02 | 1.06E-02 | 2.88E-03
Madrid Open 1.38E-02-> 151E-02 | 6.63E-03 | 3.75E-03 | 3.72E-03 (4

Miami Open 1.90E-02 | 1.17E-02 | 5.15E-03 (1
Monte-Carlo Masters || 1.19E-02=» 1.53E-02 | 4.46E-03 | 2.27E-03 | 3.92E-03(3

Paris Masters 7.29E-03=» 9.37E-03 | 2.73E-03 | 1.39E-03 | 2.40E-03

Italian Open 1.19E-02-» 1.84E-02 | 2.78E-03 | 1.00E-03 | 4.87E-03 (:2)

Canadian Open 1.16E-02 | 2.40E-03 | 1.11E-02 | 7.32E-03 | 2.42E-51
Cincinnati Masters 1.82E-02 | 143E-02 | 1.17E-02 | 7.17E-03 | 3.20E-03
Shanghai Masters 8.12E-03 | 4.38E-03 | 6.29E-03 | 4.01E-03 | 8.24E-04
The ATP Finals 1.13E-02 | 8.13E-03 | 7.63E-03 | 4.74E-03 | 1.77E-03

Figure: Players’ skill levels according to tournaments
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Concluding Remarks for NMF for Sports Analytics

» Developed a statistical model that is a hybrid between the BTL
ranking/pairwise comparison model

Ao
Pr (player i beats player j | tournament m) = ﬁ
mi mj

and nonnegative matrix factorization (NMF).
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Concluding Remarks for NMF for Sports Analytics

» Developed a statistical model that is a hybrid between the BTL
ranking/pairwise comparison model

Ao
Pr (player i beats player j | tournament m) = ﬁ
mi mj

and nonnegative matrix factorization (NMF).

» Developed simple update rules based on MM that are easy to implement and
have convergence guarantees.

» Confirms our intuition that court surface is a pertinent latent variable.
> Ranked players according to the discovered latent variable (court surface) over

a time window of 10 years.
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PSDMF and links with phase retrieval and affine rank minimization
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Positive Semidefinite Matrix Factorization (PSDMF)

(Fiorini, Massar, Pokutta, Tiwary, and Wolf, 2012; Gouveia, Parrilo, and Thomas, 2013)
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Positive Semidefinite Matrix Factorization (PSDMF)

(Fiorini, Massar, Pokutta, Tiwary, and Wolf, 2012; Gouveia, Parrilo, and Thomas, 2013)

> Given a nonnegative matrix V € RE*N, find (symmetric) K x K positive
semidefinite (PSD) matrices W¢, f =1,...,F and H,,n=1,..., N such that

Vfn = [V]fn = <Wf7 Hn> = TI'(Wan) .
——— —_———

matrix inner product trace
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Positive Semidefinite Matrix Factorization (PSDMF)

(Fiorini, Massar, Pokutta, Tiwary, and Wolf, 2012; Gouveia, Parrilo, and Thomas, 2013)

> Given a nonnegative matrix V € RE*N, find (symmetric) K x K positive
semidefinite (PSD) matrices W¢, f =1,...,F and H,,n=1,..., N such that

Vfn = [V]fn = <Wf7 Hn> = TI'(Wan) .
——— —_———

matrix inner product trace
» The PSD rank of V is smallest K such that V admits an exact PSD
factorization.
> If {Wr} and {H,} are diagonal, let
wr = diag (Wr) € RX, and h, = diag(H,) € R,
then
Vi = [V = w = Xk: Wik hin.

vector inner product

PSDMF reduces to NMF!
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PSDMF and PSD Rank

» Extension linking NMF with geometric and linear constraints in linear
programming (Yannakakis, 1991)
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» The smallest number K such that a polytope can be written as a projection (a
“shadow”) of a spectrahedron of size K (an affine slice of the cone of K x K
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the original polytope.
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PSDMF and PSD Rank

» Extension linking NMF with geometric and linear constraints in linear
programming (Yannakakis, 1991)

» The smallest number K such that a polytope can be written as a projection (a
“shadow”) of a spectrahedron of size K (an affine slice of the cone of K x K
positive semidefnite matrices Sﬁ) is equal to the PSD rank of a slack matrix of
the original polytope.

» Example: Slack matrix of the square.

= = O O

Sa

= O O
O Rk O

:

Figure: From Averkov et al. (2018)
rank(Ss) = 3, nn-rank(S;) = 4 and psd-rank(Ss) = 3, a spectrahedron in S3.

49/64

OO -



Other Motivations for PSDMF

» Of fundamental importance in various fields:

» Combinatorial optimization (Gouveia et al., 2013; Fawzi et al., 2015);

> Quantum information theory (Fiorini et al., 2012; Fawzi et al., 2015);

» Quantum communications and quantum computing (Jain et al., 2013; van
Apeldoorn et al., 2020);

Probabilistic modeling (Glasser et al., 2019);

Quantum-based recommendation systems (Stark, 2016).

vy
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Other Motivations for PSDMF

» Of fundamental importance in various fields:

» Combinatorial optimization (Gouveia et al., 2013; Fawzi et al., 2015);

> Quantum information theory (Fiorini et al., 2012; Fawzi et al., 2015);

» Quantum communications and quantum computing (Jain et al., 2013; van
Apeldoorn et al., 2020);

Probabilistic modeling (Glasser et al., 2019);

Quantum-based recommendation systems (Stark, 2016).

vy

» Connection to quantum is because quantum measurements {M;}, known as
positve operator valued measures (POVMs) are PSD and sum to the identity

> M=
i
» We are mainly concerned with algorithms and approximate factorization.
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Objective Function

» Consider the PSMDF model

Vin = [V]fn = <Wf7 Hn> = TI‘(Wan)

51/64



Objective Function

» Consider the PSMDF model

Vin = [V]fn = <Wf7 Hn> = TI‘(Wan)

» PSD matrices {W¢}f_; and {H,}"_; can be estimated by minimizing a
quadratic objective function (Stark, 2016; Vandaele et al., 2018):

S (W s, HY) = 33 (v~ TH(W/H,))?
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Objective Function

» Consider the PSMDF model
Vi = [V]m = (Wr, H,) = Tr(WeH,)

» PSD matrices {W¢}f_; and {H,}"_; can be estimated by minimizing a
quadratic objective function (Stark, 2016; Vandaele et al., 2018):

S (W s, HY) = 33 (v~ TH(W/H,))?

> For fixed {W¢}f_;, g is convex in {H,}N_; and vice versa (Vandaele et al.,
2018).

» Other objective functions are possible (Glasser et al., 2019; Basu et al., 2016;
Lahat and Févotte, 2021)
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Alternating Minimization

> Minimize the objective function g w.r.t. {H,}N_ for fixed {W}f_,, ie.,

{H; i = argmin g (W7, {H,}i0)

nJnp=1
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Alternating Minimization

> Minimize the objective function g w.r.t. {H,}N_ for fixed {W}f_,, ie.,

{H, 1ihy = argmin g({Wrd7_p, {H,}000)

nfp=1
» Change roles, i.e.,

{W/ Yo, = argmin g({Wr}f_y, {H 1))
{Wf}le

» Repeat until a stopping criterion is achieved;

» Several other algorithms had been independently developed by Vandaele et al.
(2018), Basu et al. (2016), Glasser et al. (2019) and Stark (2016) based on
this alternating approach.
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Decrease Objective Separately w.r.t. each H,

» Focus on the first problem:

{Hn+}:/y:1 = ang HAlling({Wf}f:p {Hn}nN:1)

ntnm1

53/64



Decrease Objective Separately w.r.t. each H,

» Focus on the first problem:

{Hn+}:/y:1 = ang I%ing({wf}f:b {Hn}nN:1)

”}n:I
» Objective function can be written as a sum of N terms
N
g(W L {HAY ) = 7 g (Wi, H,)
n=1

where

F
1 1
g({Wrhfo Hn) = 5D (vin = Tr(WrH,))* = 5 [lve = W(H,)|?
f=1

and W(H) = [(W1,H), ..., (Wg H)]" € RF for any matrix H.
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Link with Affine Rank Minimization and Phase Retrieval

(Lahat, Lang, Tan, and Févotte, 2021; Lahat and Févotte, 2021)

» For a specific n=1,..., N, estimating H, is tantamount to

n:iin vy — W(H,)||> subjectto H, e S¥

and possibly a rank constraint on H,;
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Link with Affine Rank Minimization and Phase Retrieval

(Lahat, Lang, Tan, and Févotte, 2021; Lahat and Févotte, 2021)

» For a specific n=1,..., N, estimating H, is tantamount to

n:iin vy — W(H,)||> subjectto H, e S¥

and possibly a rank constraint on H,;

» Because in PSDMF, one typically imposes low rank constraints on W¢ and H,
too (“inner ranks” are small);

» This optimization is known as affine rank minimization (Recht et al., 2010;
Jain et al., 2010);

» If rank(W¢) =1 forall f =1,...,F, and rank(H,) = 1, this is known as phase
retrieval (Candes et al., 2015).
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Affine Rank Minimization and Hard Thresholding

(Lahat, Lang, Tan, and Févotte, 2021)

» Many algorithms for affine rank minimization and phase retrieval,
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denoted as Hgk g(-), also known as hard thresholding;

» Can be computed as (Jain et al., 2010; Tu et al., 2016)
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where

> Ag € RF*R is a diagonal nonnegative matrix with the R largest nonnegative
eigenvalues of H on its main diagonal;

> the columns of U € R¥*F are the eigenvectors of W associated with these R
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Affine Rank Minimization and Hard Thresholding

(Lahat, Lang, Tan, and Févotte, 2021)
» Many algorithms for affine rank minimization and phase retrieval,
» Use them for PSDMF to solve the subproblem to update {H,}"N_; given W.

» Projection of a matrix onto the set of K x K PSD matrices of rank < R is
denoted as Hgk g(-), also known as hard thresholding;

» Can be computed as (Jain et al., 2010; Tu et al., 2016)
Hgr r(H) = UARUT

where

> Ag € RF*R is a diagonal nonnegative matrix with the R largest nonnegative
eigenvalues of H on its main diagonal;

> the columns of U € R¥*F are the eigenvectors of W associated with these R
largest nonnegative eigenvalues

» Can also use singular value projection; see Lahat et al. (2021) for details.
55/64



Majorization-Minimization Algorithm for PSDMF

(Soh and Varvitsiotis, 2021)

» While links to phase retrieval and affine rank minimization are nice, theoretical

guarantees (e.g., convergence guarantees) are lacking.
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Majorization-Minimization Algorithm for PSDMF

(Soh and Varvitsiotis, 2021)
» While links to phase retrieval and affine rank minimization are nice, theoretical
guarantees (e.g., convergence guarantees) are lacking.

» Would be good to develop a multiplicative update-type algorithm based on

majorization-minimization (MM).

&

Y. S. Soh (NUS Math) A. Vavitsiotis (SUTD)
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Majorization-Minimization Algorithm for PSDMF

(Soh and Varvitsiotis, 2021)

» While links to phase retrieval and affine rank minimization are nice, theoretical

guarantees (e.g., convergence guarantees) are lacking.

» Would be good to develop a multiplicative update-type algorithm based on

majorization-minimization (MM).

Y. S. Soh (NUS Math) A. Vavitsiotis (SUTD)
“Slides” below borrowed from Y. S. Soh with permission and with thanks.
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From NMF to PSDMF

Lee and Seung (1999) update rule writes

WTy

he—h-— Y
T WTwe
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From NMF to PSDMF

Lee and Seung (1999) update rule writes

W'y
h h ——.
T WTWy
Embed h as a diagonal matrix.
wTy
hic A (\(mw;)f)k hi

nng vectors = diagonal PSD matrices
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From NMF to PSDMF

Re-arrange
N .
hy — (\varv;&k)k hy
\ )
= (WT\7Vh)k (W V)

PSD Factorization

H « T (W'
~~ ~ S~

matrix operator matrix
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From NMF to PSDMF

Re-arrange

(W v),
(WT Wh),

= (WTWh),

PSD Factorization

H « T (W'
~~ ~ S~

matrix operator matrix

(WTV)k

Find: operator T that is (i) simple, (ii) preserves PSD-ness, (iii) generalizes

averaging of H and ((WTW](H))~L.
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From NMF to PSDMF

» The analogue of diagonal scaling is conjugation
W <— M(Wv)M

where
M = Geometric mean(H, (W W](H))™})
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From NMF to PSDMF

» The analogue of diagonal scaling is conjugation
W <— M(Wv)M

where
M = Geometric mean(H, (W W](H))™})

» Preserves PSD-ness and is simple.
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Geometric Mean of Two Positive Definite (PD) Matrices

» Definition: The matrix geometric mean of two PD matrices C and D is
C#D — c1/2(c—1/2Dc—1/2)1/2cl/2

Generalizes the geometric mean v/cd of two positive numbers ¢ and d.
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Geometric Mean of Two Positive Definite (PD) Matrices

» Definition: The matrix geometric mean of two PD matrices C and D is
C#D — Cl/2(c—1/2Dc—1/2)1/2cl/2
Generalizes the geometric mean v/cd of two positive numbers ¢ and d.
» Equivalent Definition: Unique PD solution X* to the Riccati equation

XC~'X =D.

» C+#D is the midpoint of the geodesic joining C and D on the manifold of PD
matrices.
» Fun facts:
C#D =D#C and (C#D)!'=C'#D .
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Multiplicative-Type Algorithm for PSDMF

Recall for fixed Wy € SK, f =1,..., F, we aim to solve

mkin v = W(H)|® subjectto H e sk

where W(H) = [(Wy, H), ..., (Wg H)] € RF.
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where W(H) = [(Wy, H), ..., (Wg H)] € RF.

Theorem (Soh and Varvitsiotis (2021))

The objective function |[v — W(H)|| is non-increasing under the update rule
HY = MWTV)M, where M = ((WTW](H)) " #(H)

Furthermore, if initialized with a PD matrix, the subsequent iterates remain PD.
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Multiplicative-Type Algorithm for PSDMF

Recall for fixed Wy € SK, f =1,..., F, we aim to solve

mkin v = W(H)|® subjectto H e sk
where W(H) = [(Wy, H), ..., (Wg H)] € RF.

Theorem (Soh and Varvitsiotis (2021))

The objective function |[v — W(H)|| is non-increasing under the update rule
HY = MWTV)M, where M = ((WTW](H)) " #(H)
Furthermore, if initialized with a PD matrix, the subsequent iterates remain PD.

Reduces to Lee and Seung (1999) update in the diagonal case, i.e.,

Wy

h =h- ————.
W TWv
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Multiplicative-Type Algorithm for PSDMF

Matrix Multiplicative Update (MMU) Algorithm (Soh and Varvitsiotis, 2021):

» Input: A matrix V € RiXN and parameter K € N;
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Multiplicative-Type Algorithm for PSDMF

Matrix Multiplicative Update (MMU) Algorithm (Soh and Varvitsiotis, 2021):

» Input: A matrix V € ]RiXN and parameter K € N;
» Output {W¢}r_,, {H,}; C SK such that vs ~ (W¢, H,,) for all £, n;
» While stopping criterion not satisfied, do

Wi N¢(HTve )N; where Ny = ([HTH](Wy)) " #(Wy)

and
H, «— M,V v, )M, where M, = ((WTW](H,)) "#(H,).
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Multiplicative-Type Algorithm for PSDMF

Matrix Multiplicative Update (MMU) Algorithm (Soh and Varvitsiotis, 2021):

» Input: A matrix V € ]RiXN and parameter K € N;
» Output {W¢}r_,, {H,}; C SK such that vs ~ (W¢, H,,) for all £, n;
» While stopping criterion not satisfied, do

Wi N¢(HTve )N; where Ny = ([HTH](Wy)) " #(Wy)

and

H, «— M,V v, )M, where M, = ((WTW](H,)) "#(H,).

Properties of MMU:
> Always operates in interior of PSD cone (no projection needed);
» Geometric interpretation of trajectory;

> Recovers classical MU (Lee and Seung, 1999) if matrices are diagonal.
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Proof ldea

» Write down candidate auxiliary function inspired by Taylor's theorem;
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Proof ldea

» Write down candidate auxiliary function inspired by Taylor's theorem;
» Show it dominates square loss, this reduces to
MoM-WTW =0,

where M = ([WTW](H))A#(H) is the matrix geometric mean;
» Pre-multiply with H=1/2 reduces to H = I;
» Apply Cauchy-Schwarz inequality

Tr(X?)Tr(Y?) > Tr(XY)?
and a consequence of Lieb’s concavity theorem (Lieb, 1973)

(2x) e (Xx) < (Xx) o (%)

1/2
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Concluding Remarks for PSDMF

» PSDMF (Gouveia et al., 2013; Fiorini et al., 2012; Vandaele et al., 2018) is a
generalization of NMF

(PSDMF) Vin = <Wf7 Hn>7 Wf7 Hn % 07
(NMF) Vn = <Wfa hn>7 Wy, hn > 0.
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Concluding Remarks for PSDMF

» PSDMF (Gouveia et al., 2013; Fiorini et al., 2012; Vandaele et al., 2018) is a
generalization of NMF

(PSDMF) Vin = <Wf7 Hn>7 Wf7 Hn % 07
(NMF) Vn = <Wf7 hn>7 Wy, hn > 0.

» Can use signal processing primitives such as phase retrieval and affine rank
minimization within an alternating minimzation framework to find {Wy} and
{H,} (Lahat et al., 2021);

> Even better, use majorization-minimization (MM) in the space of PD
matrices (Soh and Varvitsiotis, 2021);

» Other extensions to symmetric cones, including SOCPs.
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