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Multi-Armed Bandits (MAB)

Feedback: Action:
corresponding reward pull an arm

Environment

@ Maximize the cumulative reward over a fixed horizon =
Exploration-Exploitation tradeoff.

Objectives

@ Our focus: Find the best arm or arms (largest expected reward(s))
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Background: Multi-Objective Optimization

@ Consider a K = 3 arm bandit problem.
@ There are M = 2 users.

@ Each user has their own preference.

M=2 K=3
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e Aim to find if, ..., iy, € [K] via bandit feedback.
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Problem Statement

e Arm set: [K] ={1,...,K};

o Objective set: [M] = {1,..., M};

e Confidence level: ¢ € (0, 1);

® Mean reward of arm i € [K] under objective m € [M]: pjm € R;
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Problem Statement

Arm set: [K]={1,...,K};

Objective set: [M] = {1,..., M};

Confidence level: § € (0,1);

Mean reward of arm i € [K] under objective m € [M]: pim € R;

M=2 K=3

® O &
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p1=08,  pu1=01 u31=03, i =1
/J,2,1 = 0.1, /L272 = 02, ,u3,2 = 09 ; I; = 3
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Problem Statement

o I"=(if, - ,it)) € [K]M is the vector of best arms, where

iy = arg max fij m.
ie[K]
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Problem Statement

o I"=(if, - ,it)) € [K]M is the vector of best arms, where

iy = arg max fij m.
ie[K]

e For t € N, agent pulls arm A; € [K] and obtains M rewards

XAum(t) ~ N(MAt,m7 1) Vme [M]
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Problem Statement

o I"=(if, - ,it)) € [K]M is the vector of best arms, where

iy = arg max fij m.
ie[K]

e For t € N, agent pulls arm A; € [K] and obtains M rewards
XAum(t) ~ N(NAt,ma 1) V'm e [M].

@ Based on the history of arm pulls and rewards up to time t, agent can
decide whether to stop at the time step t.

@ After stopping, agent recommends the empirically best arms .
@ Objective:
min E[rs] st. P #1*) <6,
™

where | = (71, e ,TM) is the recommendation at the stopping time.
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e Policy and Error Probability: m = {m;}$2; and §
@ Arm Pulling Strategy at time t: A; € a({AS,XAS,l, oo Xagm E;});
@ Stopping Time: 7g;
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Policy and Error Probability: m = {m:}?2; and ¢

Arm Pulling Strategy at time t: A; € a({AS,XAS,l, oo Xagm E;});
Stopping Time: 7g;

Final Recommendation: 15 € [K]M.
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Policy and Error Probability: = = {7}, and

Arm Pulling Strategy at time t: A; € a({AS,XAsJ, ... ’XAS,M}E;D?
Stopping Time: 7g;

Final Recommendation: 15 € [K]M.

Definition
A policy 7 is 0-PAC if it returns the vector of best arms w.p. > 1 — 4 in
finite time, i.e., for all instances v,

PT(rs < +o0)=1 and  PI(ls=I*(v))>1—0.
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Policy and Error Probability: = = {7}, and

Arm Pulling Strategy at time t: A; € a({AS,XAsJ, oo Xagm E;i);
Stopping Time: 7g;

Final Recommendation: 15 € [K]M.

A policy 7 is 0-PAC if it returns the vector of best arms w.p. > 1 — 4 in
finite time, i.e., for all instances v,

PT(rs < +o0)=1 and  PI(ls=I*(v))>1—0.

Definition

Given instance v, the gap of arm i € [K] under objective m € [M] is

Ai,m(V) = Kjx m — Him-

v
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Lower Bound

Information-Theoretic Lower Bound
For any sequence of §-PAC policies {7s}5¢(0,1),

lim inf E"[Tf] > c*(v) Vinstances v,
5—0* log(s)
where c*(v) is given by
wjwix () A2 (v
c*(v)7L:=sup min min () A5 ) (1)
wer me[M] ie[KNis(v)  2(wi + wjs (1))
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5—0* log(s)
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Lower Bound

Information-Theoretic Lower Bound
For any sequence of §-PAC policies {7s}5¢(0,1),

Eﬂ'
lim inf "[Tf] > c*(v) Vinstances v,
30" log(3)
where c*(v) is given by
. wi wis (v) AF (V)
(v) = i i . 1
= B ey O

e Unknown gaps Ajm(v) .

@ In (1), T denotes the set of probability distributions on [K].
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Lower Bound

Information-Theoretic Lower Bound
For any sequence of §-PAC policies {7s}5¢(0,1),

> c*(v) Vinstances v,

where c*(v) is given by

Wi Wix (v) A12,m(V)

w( \—1 . i i
c*(v)7" = sup melM] ielKI\iS(v) 2Awi +wizw) E

werl

@ Unknown gaps Ajm(v) .

@ In (1), T denotes the set of probability distributions on [K].
o Let w* €l attain the maximum of “sup” in (1).
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Lower Bound

Information-Theoretic Lower Bound

For any sequence of §-PAC policies {7s}5¢(0,1),

> c*(v)  Vinstances v,

where c*(v) is given by

Wi Wix (v) A12,m(V)

c(v)li= sup

min  min
wer MM ey 2w T W)

Unknown gaps Ajm(v) .

In (1), T denotes the set of probability distributions on [K].
o Let w* €l attain the maximum of “sup” in (1).

o Then, w™ represents the optimal proportion of arm pulls!
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Methodology: A Possible Solution

Calculate

Wi Wix(v) Alg,m(v)

w* = argmax min min
wer - melM] ielKN\iz(v)  2(wi + Wiz (1))

Then, a natural algorithm is to pull arms by empirical values of w*.
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Methodology: A Possible Solution

Calculate

Wi Wix(v) Alg,m(v)

w* = argmax min min
wer - melM] ielKN\iz(v)  2(wi + Wiz (1))

Then, a natural algorithm is to pull arms by empirical values of w*.

Recommend
Empirical best arm

[ Pull each arm once] I Yes

!

[ Update empirical means] ,No

! 1

[Empiricalproportion W ] ‘ [Pullarms fitting w ]

Chernoff
Stopping?
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Methodology: Difficulties

@ To derive an (asymptotically) optimal algorithm, calculate:

. Wi Wi (v) A%m(v)
w* = = argmax min min
wer - melM] ielKNin(v)  2(wi + Wis(v)

Then pull arms according to the proportions in the probability vector

w*.
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Methodology: Difficulties

@ To derive an (asymptotically) optimal algorithm, calculate:

. Wi Wi (v) A%m(v)
w* = = argmax min min
wer - melM] ielKNin(v)  2(wi + Wis(v)

Then pull arms according to the proportions in the probability vector

w*.

o Difficulty: Difficult to obtain a closed-form solution for w*.
@ Possible Solution: lterative numerical method to compute w*.

@ Problem: May not be provably optimal if we run the method finitely
many iterations.
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Methodology: MO-BAT Policy

Recall that

Wi wi;(v) A2 (V)

im

w1 i [
(v = sup min min
(v) weré me[M] ie[KI\iz(v)  2(wi + Wiz (1))
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Methodology: MO-BAT Policy

Recall that

Wi Wi (v) A12,m(‘/)

x( )1 i [
(v = sup min min
(v) weI? me[M] ielkNin(v)  2(wi + Wiz(v))

&)
o Define first-order approximation for each arm and objective g\(,i’m)(w):

g™ (w) + (Vel ™ (w), z — w).
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Methodology: MO-BAT Policy

Recall that

Wi Wix (v) A,?’m(v)

w()—1 i
(v = su min min ’
(v) wGFF me[M] ie[KI\iz(v)  2(wi + Wiz (v))

g"™(w)

gv(w)

@ Define first-order approximation for each arm and objective g\(,i’m)(w):

g (w) + (Vugd ™ (w), z — w).

@ Define overall gradient-related function:

: i i (7,m) i,m)
hv w,z) .= mm min v w)+ Vw v W), Z —w .
(.2)= 2 e { g (@) + (Vg ™ (w) ) }
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Methodology: MO-BAT Policy

@ Gradient-related function

h,(w, z) = min min §’7"’) w)+(V \Si’m) w), z—w }
w2)= min v L Vw) 4 (Tugl ). 2 - 0)
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e h,(w,z) is designed to approximate the overall objective g, (w).
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Methodology: MO-BAT Policy

@ Gradient-related function

hv w,Z) = min min ‘gi,m) w) + v ‘Si7m) O). 2w }
( ) me[M] ie[K]\;;(v){g (w) + (Vwg (w) )

@ h,(w, z) is designed to approximate the overall objective g, (w).
e But h,(w, z) is not a “linear approximation” of g,(w).

@ We take linear approximations of the inner terms

g (w) + (Voel ™ (w), z — w).
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Methodology: MO-BAT Policy

@ Gradient-related function

hv w,Z) = min min ‘gi,m) w) + v ‘Si7m) O). 2w }
( ) me[M] ie[K]\;;(v){g (w) + (Vwg (w) )

@ h,(w, z) is designed to approximate the overall objective g, (w).
e But h,(w, z) is not a “linear approximation” of g,(w).

@ We take linear approximations of the inner terms

g (w) + (Voel ™ (w), z — w).

@ Guide the agent to pull arms in the “direction of the gradient”.
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Methodology: MO-BAT Policy

@ Gradient-related function

hv w,Z) = min min ‘gi,m) w) + v ‘Si7m) O). 2w }
( ) me[M] ie[K]\;,;q(v){g (w) + (Vwg (w) )

hy(w, z) is designed to approximate the overall objective g, (w).

But h,(w, z) is not a “linear approximation” of g, (w).

@ We take linear approximations of the inner terms

g (w) + (Voel ™ (w), z — w).

Guide the agent to pull arms in the “direction of the gradient”.

Adapting algorithm in Wang et al. (2021) to our setting
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Methodology: MO-BAT Policy

@ Gradient-related function

hv w,Z) = min min ‘gi,m) w) + v ‘Si7m) O). 2w }
( ) me[M] ie[K]\;,;q(v){g (w) + (Vwg (w) )

@ h,(w, z) is designed to approximate the overall objective g, (w).
e But h,(w, z) is not a “linear approximation” of g,(w).

@ We take linear approximations of the inner terms

g (w) + (Voel ™ (w), z — w).

@ Guide the agent to pull arms in the “direction of the gradient”.
e Adapting algorithm in Wang et al. (2021) to our setting

@ Maintaining computational tractability and considering the KM tuples
of possible best arms
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Methodology: MO-BAT Policy

Surrogate proportion at time step t:

st == argmax hg, (&.¢-1, ), (a Linear Program)
ser(ﬂ)

where
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Methodology: MO-BAT Policy

Surrogate proportion at time step t:

s¢ == argmax hg, (@W. -1, 5) (a Linear Program)
serm

where

@ Average allocation up to time t — 1
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Methodology: MO-BAT Policy

Surrogate proportion at time step t:

s¢ == argmax hy, (@.¢-1,5), (a Linear Program)
ser(m

where

@ Average allocation up to time t — 1

@ Empirical instances at time t is v;
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Methodology: MO-BAT Policy

Surrogate proportion at time step t:

s¢ == argmax hy, (@.¢-1,5), (a Linear Program)
ser(m

where

@ Average allocation up to time t — 1

@ Empirical instances at time t is v;

@ [t = max,cn.ok<t 2K is to prevent the instance v}, from changing too
frequently.
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Methodology: MO-BAT Policy

Sampling Rule:

At € argmax [B. ;1 + s,
i€[K]

where B.; is the buffer defined as

B.70 = Q and B~,t = B~,t—1 — €A, + S;.
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Sampling Rule:

At € argmax [B. ;1 + s,
i€[K]

where B.; is the buffer defined as

B.70 = Q and B~,t = B~,t—1 — €A, + S;.

Example: K = 2.
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Methodology: MO-BAT Policy

Sampling Rule:

At € argmax [B. ;1 + s,
i€[K]

where B.; is the buffer defined as

B.70 = Q and B~,t = B~,t—1 — €A, + S;.

Example: K =2. At time t = 1, suppose

0.1 0.1
s1 = [0'9] = pullarm2 — B ;= [_0'1]
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Methodology: MO-BAT Policy

Sampling Rule:

At € argmax [B. ;1 + s,
i€[K]

where B.; is the buffer defined as

B.70 = Q and B~,t = B~,t—1 — €A, + S;.

Example: K =2. At time t = 1, suppose

0.1 0.1
s1 = [0'9] = pullarm2 — B ;= [_0'1]

At time t = 2, suppose

s = [82] B i+s = [82] — pullarm1l = B,= [_0044]
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Methodology: MO-BAT Policy

Sampling Rule Pipeline

Lower Bound
g lu) L
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Methodology: MO-BAT Policy

Sampling Rule Pipeline

Lower Bound

c*(v)?!

w* = argmax g, (w)

wen

Q
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Methodology: MO-BAT Policy

Sampling Rule Pipeline

Lower Bound

c*(v)?!

w* = argmax g, (w)

wen

Q

s; = arg max hg, (@.41—1,S)
sel(m) t
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Methodology: MO-BAT Policy

Sampling Rule Pipeline

c*(v)?!

1 1

. ' el s; = arg max hg (W. 41,8
[w alglggzcg,,(w)} ~ [ gseF(") vlt( t—1, )

[ Lower Bound] A; € argmax [B. ;1 + s¢;
i€[K]
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Methodology: MO-BAT Policy

Stopping Rule:
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Methodology: MO-BAT Policy

Stopping Rule:

@ Chernoff's stopping rule (Kaufmann et al., 2016) inspired by our
previous work (Chen et al., 2023).
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Methodology: MO-BAT Policy

Stopping Rule:

@ Chernoff's stopping rule (Kaufmann et al., 2016) inspired by our
previous work (Chen et al., 2023).

Let
- Nie N ey D7 (1)
Z(t) ‘= min min Bt Tim (), Tm
me[M] ic[K]\im(t) 2(/\/,'71- + NTm(t),t)

J/

approx of gsi’m) (w)
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Methodology: MO-BAT Policy

Stopping Rule:

@ Chernoff's stopping rule (Kaufmann et al., 2016) inspired by our
previous work (Chen et al., 2023).

o Let - . N
Z(t) ‘= min min Bt Tim (), Tm
me[M] ic[K]\im(t) 2(/\/,'71- + NTm(t),t)

J/

approx of gsi’m) (w)

@ The stopping time of MO-BAI is
s = min{t > K : Z(t) > B(t,9)},

where [(t,0) is a carefully tuned threshold.
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Theoretical Results

Proposition: §-PACness

Fix 0 € (0,1). Then, MO-BATI is -PAC, i.e., for all instances v,

PMO-BAL (70 < +00) =1 and

PMO-BAL( = 1*(v)) > 1 - 4.
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Theoretical Results

Proposition: §-PACness

Fix 0 € (0,1). Then, MO-BATI is -PAC, i.e., for all instances v,

PMO-BAL (75 < +00) =1 and

PMO-BAL( = 1*(v)) > 1 - 4.

Theorem: Asymptotic Optimality
Under MO-BALI, for all instances v,

MO-BAI
. EY
limsup

)
msu Iog(%) < c*(v).
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Numerical Study on Synthetic Dataset
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Figure 1: Average 75 of MO-BAT and Multi-Objective adaptation of D-Tracking
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Numerical Study on Synthetic Dataset
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Numerical Study on Synthetic Dataset
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Numerical Study on the SNW Dataset

0=0.1 0 =0.05
MO-BAI 968.82 + 58.21 1,023.77 £ 67.42
BASELINE 4,485.98 +124.92 | 6,168.29 4+ 132.01
BASELINE-NON-UNIF | 3,841.05 + 136.44 | 4,320.55 + 128.26
MO-SE 2,322.39 +461.54 | 2,411.16 = 421.88

Table 1: Average stopping times obtained by running 100 independent trials with

0 € {0.1,0.05} for the SNW dataset. In BASELINE and BASELINE-NON-UNIF,
we set ITER = 20.
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Conclusion for MO-BAI

@ Multi-Objective Best Arm Identification problem with fixed-confidence
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Conclusion for MO-BAI

@ Multi-Objective Best Arm Identification problem with fixed-confidence

M=2 K=3
2 o8 0.1 0.3
=1, if=3
r@% 0.1 0.2 0.9
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Conclusion for MO-BAI

@ Multi-Objective Best Arm Identification problem with fixed-confidence

M=2 K=3
2 o8 0.1 0.3
=1, if=3
r@% 0.1 0.2 0.9

@ Pulling arm A; yields a vector of rewards

Xa,,m(t) ~ N(pa,m, 1) Vm e [M].
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Conclusion for MO-BAI

@ Multi-Objective Best Arm Identification problem with fixed-confidence

M=2 K=3
2 o8 0.1 0.3
=1, if=3
r@\ 0.1 0.2 0.9

@ Pulling arm A; yields a vector of rewards
XAmm(t) ~ N(NAt7m’ 1) Vme [M]

@ Derived an asymptotically optimal and efficient algorithm

T MO-BAI
K7 [75] < lim 71[5" (5] < c(v) .

c*(v) <liminf <
5—0+ Iog(%) S50+ |Og(%)
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From Theory to Applications

How can we apply the theory to real-world
wireless communication systems?
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From Theory to Applications

How can we apply the theory to real-world
wireless communication systems?

3264 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 5, MAY 2023

Fast Beam Alignment via Pure Exploration in
Multi-Armed Bandits

Yi Wei”, Zixin Zhong™, and Vincent Y. F. Tan"", Senior Member, IEEE

Zhejiang University HKUST (Guangzhou)
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Beam Alignment

Receiver

@ Beams at Tx and Rx are narrow directional.
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Beam Alignment

Receiver

©
=3

-
a1

]
1]
]
1
1
g

]

Transmitter

0
@ Beams at Tx and Rx are narrow directional.

@ Beam Alignment ensures Tx and Rx beams are accurately aligned to
establish a reliable communication link.
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Beam Alignment

Fundamental challenges

180

Receiver

Number of Antennas 1

!

Number of Beams 1

!

> One channel measurement—estimate channel state
information (CSI) corresponding to each state for each - T
transmitter-receiver pair)

. » Amount and the frequency of the channel measurement
~| Transmitter

BA latency |

@ Channel state information for each Tx-Rx pair is measured.
@ Frequency of measurement is high due to mobility.

@ Results in beam alignment latency which increases with the number
of antennas at the Rx and Tx.
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Beam Alignment as Multi-Armed Bandits

Environment

Action Reward

- -
Exploitation Exploratiog

. Which arm to pull in each step?
O o M

Agent
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Beam Alignment as Multi-Armed Bandits

Environment

\

Action ’ lReward

. .- d .
Exploitation Exploratm{l . Which arm to pull in each step?
O o M

Agent

Pure Exploration: ldentify the arm with the largest mean using as few
samples as possible.
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Beam Alignment as Multi-Armed Bandits

.
! Environment
i
i
i
i
i
i

Action ’ lReward

. Which arm to pull in each step?
O o M

Pure Exploration: ldentify the arm with the largest mean using as few
samples as possible.

Idea: Formulate the beam alignment problem as a pure exploration
problem with the objective of minimizing the required time steps in the
fixed-confidence setting.
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System Model: A mmWave massive MISO system

e Massive mmWave MISO system: a base station (BS) equipped
with N transmit antennas serves a single-antenna user.
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System Model: A mmWave massive MISO system

e Massive mmWave MISO system: a base station (BS) equipped
with N transmit antennas serves a single-antenna user.

@ Saleh—Valenzuela channel model (limited propagation path in
mmWave channel)

h=53"a (9(0) + iﬂ(/)a (9(’))

/ " \
Amplitude

1 line-of-sight (LoS) path > L-1non-LoS (NLoS) paths
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Transmission Scheme

Coherence time: Channels stay constant
(T time slots)
A

e Beam Alignment | Data Transmission Beam Alignment Data Transmission
Phase Phase Phase Phase o
Y Y
(Tg time slots) (T time slots)
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Transmission Scheme

Coherence time: Channels stay constant
(T time slots)
A

e Beam Alignment | Data Transmission Beam Alignment Data Transmission
Phase Phase Phase Phase
Y Y
(Tg time slots) (T time slots)

o Beam alignment phase: Finds the optimal beam from the codebook
C={fk=a(-1+2k/K): k=0,1,...,K -1}

where the array response vector is

a(x) = \/]_N 1 612de ej27f2dx ”‘,ejo"(N—l)dx] eCN.
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Transmission Scheme

Coherence time: Channels stay constant

(T time slots)
A
Beam Alignment | Data Transmission Beam Alignment Data Transmission
Phase Phase Phase Phase
Y Y
(Tg time slots) (T time slots)

o Beam alignment phase: Finds the optimal beam from the codebook
C={fk=a(-1+2k/K): k=0,1,...,K -1}

where the array response vector is

a(x) = o [1, % ¥ JFN-1d] ¢ N,

VN

o Data transmission phase: Base station transmits the data using the
selected f* € C. Received signal at the user in time slot t:

:\/ﬁth*St—i—nt teN.
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Beam Alignment Phase

@ System Throughput Performance: Effective achievable rate

Rup 2 (1 _ %) log (1 + p’h:;'z>

Tg should be minimized to maximize Reg.
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Beam Alignment Phase

@ System Throughput Performance: Effective achievable rate

Reff_<1—;D)| (1+ )

Tg should be minimized to maximize Reg.

’ Hf*|2

o Measurement: Received signal power if f is chosen:

R(fi) = [v/Ph"y + nf? = plhfy 2 4 2y/pR(Wn) + |nf?
- .

|
| Heteroscedastic Gaussian Variable Gamma Variable
|
i

N(plh4[2. 2p]hE[202) r(1,1/0%)
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Properties of /Assumptions on Beam Alignment Problem

Beam Alignment i )

Pure Exploration in MAB E

F=———

Find the optimal beam Find the optimal beam
as soon as possible " as soon as possible

beams - base arms

received signal power —— rewards
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Properties of /Assumptions on Beam Alignment Problem

E Beam Alignment i )

Pure Exploration in MAB E

F=———

Find the optimal beam Find the optimal beam
as soon as possible " as soon as possible

beams - base arms

received signal power —— rewards

Properties: Let u = (,ul, - ,,uK), and let H(1) > H(2) > ... > H(K)-
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Properties of /Assumptions on Beam Alignment Problem

E Beam Alignment i )

Pure Exploration in MAB i

F=———

Find the optimal beam Find the optimal beam
as soon as possible " as soon as possible

beams —_— base arms
received signal power —— rewards
Properties: Let u = (,ul, - ,,uK), and let H(1) > H(2) > ... > H(K)-

1. The means of the reward associated with arms k and i, where
|i — k| < J/2, are close.
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Properties of /Assumptions on Beam Alignment Problem

E Beam Alignment i )

Pure Exploration in MAB i

F=———

Find the optimal beam Find the optimal beam
as soon as possible " as soon as possible

beams - base arms

received signal power —— rewards

Properties: Let u = (,ul, - ,,uK), and let H(1) > H(2) > ... > H(K)-
1. The means of the reward associated with arms k and i, where
|i — k| < J/2, are close.

2. There are K — LJ arms that have approximately mean zero rewards,
i€, [i(Ly41) R H(LI42) N - R k) A O,
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Properties of /Assumptions on Beam Alignment Problem

E Beam Alignment i )

Pure Exploration in MAB i

F=———

Find the optimal beam Find the optimal beam
as soon as possible " as soon as possible

beams - base arms

received signal power —— rewards

Properties: Let u = (,ul, - ,,uK), and let H(1) > H(2) > ... > H(K)-

1.

The means of the reward associated with arms k and i, where
|i — k| < J/2, are close.

. There are K — LJ arms that have approximately mean zero rewards,

L€, fi(Ly41) R H(LI42) R - R k) R0,
The variance each arm is related to its mean as follows: Ui = 202,
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Group Property

%—resolution beam codebook

@ Constructed by grouping the nearby beams in the codebook C

Jg

Ch2ibs= > £

k=J(g—1)+1

g=01,...,6-1
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Group Property

%—resolution beam codebook

@ Constructed by grouping the nearby beams in the codebook C

Jg

Ch2ibs= > £

k=J(g—1)+1

g=01,...,6-1

@ Received power for beam b, (a super arm)
Ry = plhlibg ? + 2/pR(hi1bgn"),

follows a heteroscedastic Gaussian distribution.
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Group Property

%—resolution beam codebook

@ Constructed by grouping the nearby beams in the codebook C

Jg

Ch2ibs= > £

k=J(g—1)+1

g=01,...,6-1

@ Received power for beam b, (a super arm)
Ry = plh™by 2 + 2/pR(h by "),

follows a heteroscedastic Gaussian distribution.

@ Information of a set of beams can be obtained at each time step.
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Bandit Beam Alignment Problem Setup

Bandit Beam Alignment Problem
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Bandit Beam Alignment Problem Setup

Bandit Beam Alignment Problem

@ K base arms [K] £ {1,...,K}: each associated with the beam f;;
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Bandit Beam Alignment Problem Setup

Bandit Beam Alignment Problem

@ K base arms [K] £ {1,...,K}: each associated with the beam f;;

e {[K],J}: set of all non-empty consecutive tuples of length < J
o Example: {[6],2} =
{1}, 41,2}, {2}, {2,3}, {3}, {3, 4}, {4}, {4,5}, {5}, {5, 6}, {6}}
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Bandit Beam Alignment Problem Setup

Bandit Beam Alignment Problem

@ K base arms [K] £ {1,...,K}: each associated with the beam f;;

e {[K],J}: set of all non-empty consecutive tuples of length < J
o Example: {[6],2} =
{1}, 41,2}, {2}, {2,3}, {3}, {3, 4}, {4}, {4,5}, {5}, {5, 6}, {6}}

o (K, J)-super arm: Each tuple in {[K], J} is associated with

Jg

bg = Z f € C(J).
k=J(g—1)+1
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Bandit Beam Alignment Problem Setup

At time step t
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Bandit Beam Alignment Problem Setup

At time step t

@ Choose an action (or a (K, J)-super arm) A(t) € {[K], J}.
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Bandit Beam Alignment Problem Setup

At time step t

@ Choose an action (or a (K, J)-super arm) A(t) € {[K], J}.

@ Observe the reward

R(A(t)):]-“( > fk,p,h,nt>

keA(t)

where

F(f,p,h,n) = plhtf12 +2,/pR(h"Fn*)
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Bandit Beam Alignment Problem Setup

At time step t

@ Choose an action (or a (K, J)-super arm) A(t) € {[K], J}.

@ Observe the reward

R(A(t)):]-“( > fk,p,h,nt>

keA(t)

where

F(f,p,h,n) = plhtf12 +2,/pR(h"Fn*)

Note that for a given superarm A € {[K], J}, the reward R(A) is

RS "

keA

2
R(A) ~ N(pa2pa0®)  and  pa=p

Y

which is a heteroscedastic Gaussian distribution.
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Bandit Beam Alignment Problem Setup

At time step t

@ Choose an action (or a (K, J)-super arm) A(t) € {[K], J}.

@ Observe the reward

R(A(t)):]-“( > fk,p,h,nt>

keA(t)

where

F(f,p,h,n) = plhtf12 +2,/pR(h"Fn*)

Note that for a given superarm A € {[K], J}, the reward R(A) is

RS "

keA

2
R(A) ~ N(pa2pa0®)  and  pa=p

Y

which is a heteroscedastic Gaussian distribution.

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 31/42



Bandit Beam Alignment Problem Setup

Algorithm: 7 := {(7¢)¢, 77,
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Bandit Beam Alignment Problem Setup

Algorithm: 7 := {(m¢), 7"

e Sampling rule 7;: determines the (K, J)-super arm A(t) to pull at
time step t based on the observation history and the arm history

He1 = {A(1), R(1),A(2),R(2), -+, A(t = 1), R(t = 1)}

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 32/42



Bandit Beam Alignment Problem Setup

Algorithm: 7 := {(m¢)s, 77,97, J}

e Sampling rule 7;: determines the (K, J)-super arm A(t) to pull at
time step t based on the observation history and the arm history

He1 = {A(1), R(1),A(2),R(2), -+, A(t = 1), R(t = 1)}

@ Stopping rule: leads to a stopping time 77 satisfying

P(7™ < 400) = 1.
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Bandit Beam Alignment Problem Setup

Algorithm: 7 := {(m¢)s, 77,97, J}

e Sampling rule 7;: determines the (K, J)-super arm A(t) to pull at
time step t based on the observation history and the arm history

He1 = {A(1), R(1),A(2),R(2), -+, A(t = 1), R(t = 1)}

@ Stopping rule: leads to a stopping time 77 satisfying

P(7™ < 400) = 1.

e Recommendation rule ¢)™: outputs a base arm k™ € [K].
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Bandit Beam Alignment Problem Setup

Algorithm: 7 := {(m¢)s, 77,97, J}

e Sampling rule 7;: determines the (K, J)-super arm A(t) to pull at
time step t based on the observation history and the arm history

He1 = {A(1), R(1),A(2),R(2), -+, A(t = 1), R(t = 1)}

@ Stopping rule: leads to a stopping time 77 satisfying

P(7™ < 400) = 1.

e Recommendation rule ¢)™: outputs a base arm k™ € [K].

Aim: Use as few samples as possible to output an arm that is optimal
with probability at least 1 — 4.
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Information-Theoretic Lower Bound

@ Heteroscedastic Gaussian bandit instance:
v=(N(uf,2u{c?), - N(uk, 2uko?)).

e Optimal arm A*(v) = arg max,c(x] K-
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Information-Theoretic Lower Bound

@ Heteroscedastic Gaussian bandit instance:
v = (N(ui,20]0%), -, N(u, 2 0?)).
e Optimal arm A*(v) = arg max,c(x] K-

Theorem (Lower Bound)

For any (6, J)-PAC algorithm,
1
>
Brlr] > () 1og (5 ).

c*(v) L =sup inf (Z wi Dug Mka#k))

wel u€Alt(v)

where

where Dyq is the KL-divergence between two heteroscedastic Gaussians.

v
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Two-Phase Track & Stop (2PHT&S) Algorithm

Main Ildea: Exploit prior knowledge:
o Correlation
@ Heteroscedasticity

@ Group property
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Two-Phase Track & Stop (2PHT&S) Algorithm

Main Ildea: Exploit prior knowledge:
o Correlation
@ Heteroscedasticity

@ Group property

> Phase I K base arms divided into G arm sets

K ["Jbase arms ‘
base arms[® ® ® ... @] ... oo .0/ 000 . 0] .. (o000

G L Y J L Y ) | . J L . 1
super arms © ® - @

Choose the super arm l [ Choose the super arm g*
g -1/g"+1 . J

>Phase I1 2J base arms

[e0e .. 00|

l

Choose the optimal base arm k*
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Two-Phase Track & Stop (2PHT&S): Phase |

> Phase [ K base arms divided into G arm sets
A
K "] base arms *
basearmsi@ @ ® .. ®| .. (00 @ .. 0| (00O .0 .. (000 . 0
G L . J \ . )L . J \ Y J
® ® ) . .. (]
super arms - 1 )

] Choose the super arm g*
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Two-Phase Track & Stop (2PHT&S): Phase |

> Phase [ K base arms divided into G arm sets
A
K "] base arms *
basearmsi@ @ ® .. ®| .. (00 @ .. 0| (00O .0 .. (000 . 0
G L . J \ . )L . J \ Y J
® ® ) . .. (]
super arms - 1 )

] Choose the super arm g*

Phase I: Search for the optimal super arm with probability > 1 — 47
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Two-Phase Track & Stop (2PHT&S): Phase |

> Phase [ K base arms divided into G arm sets
A
K "] base arms *
basearmsi@ @ ® .. ®| .. (00 @ .. 0| (00O .0 .. (000 . 0
G L . J \ . )L . J \ Y J
c ® ) . .. (]
super arms 1 )

] Choose the super arm g*

Phase I: Search for the optimal super arm with probability > 1 — 47
@ Group K base arms into G arm sets to reduce the search space
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Two-Phase Track & Stop (2PHT&S): Phase |

> Phase [ K base arms divided into G arm sets
,‘«
K "] base arms “
basearms® @ ® .. ® .. [0 0@ .. 0| (000 .0 .. (000 - 0
G L Y J \ Y )L Y J \ . )
super arms * @ ® - - ©

l Choose the super arm g*

Phase I: Search for the optimal super arm with probability > 1 — 47
@ Group K base arms into G arm sets to reduce the search space
@ Choose one super arm (beam group) by the sampling rule of HT&S
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Two-Phase Track & Stop (2PHT&S): Phase |

> Phase [ K base arms divided into G arm sets
K ["Jbasearms ) \
basearms@ ® ® .. @] .. [0 0@ .. 0| (000 0| .. (000 .. 0
G L Y J \ Y )L Y J \ . )
super arms - @

l Choose the super arm g*

Phase I: Search for the optimal super arm with probability > 1 — 47
@ Group K base arms into G arm sets to reduce the search space
@ Choose one super arm (beam group) by the sampling rule of HT&S
@ Use the grouped beam to transmit the pilot symbols and observe

Ry(t) = ]-"< > fph, nt>.

kES,
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Two-Phase Track & Stop (2PHT&S): Phase |

> Phase [ K base arms divided into G arm sets
K ["Jbasearms ) \
basearms@ ® ® .. @] .. [0 0@ .. 0| (000 0| .. (000 .. 0
G L Y J \ Y )L Y J \ . )
super arms - @

l Choose the super arm g*

Phase I: Search for the optimal super arm with probability > 1 — 47

Group K base arms into G arm sets to reduce the search space
Choose one super arm (beam group) by the sampling rule of HT&S
Use the grouped beam to transmit the pilot symbols and observe

Ry(t) = ]-"< > fph, nt>.

kES,

@ Select the optimal super arm

g" = argmaxE[Rg(t)].
g€[G]
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Two-Phase Track & Stop (2PHT&S): Phase Il

»Phase I1 G super arms
A

[ \
@ @ @ @

superarm g*—1/g"+1 l l super arm g*

2] base arms
jeoe .. 00}

Choose the optimal base arm k*
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Two-Phase Track & Stop (2PHT&S): Phase Il

>Phase I1 G super arms
A

[
C) C] e e
superarm g*—1/g"+1 l l super arm g*

2] base arms
jeoe .. 00}

Choose the optimal base arm k*

Phase Il: Search for the optimal base arm with probability > 1 — 4,
o Construct a base arm set, including the optimal super arm and its
neighboring super arm
@ Search the optimal base arm in the base arm set using the HT&S
algorithm
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HT&S Algorithm: An improved T&S Algorithm

@ Sampling Rule: Estimate the number of times each arm should be
sampled

argmin T;(t — 1), min T;(t — 1) < /t,
i€[K] i€[K]
Q(t)=
argmaxtw; (t — 1) — T;(t — 1), otherwise.
i€[K]
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HT&S Algorithm: An improved T&S Algorithm

@ Sampling Rule: Estimate the number of times each arm should be

sampled
argmin T;(t — 1), min T;(t — 1) < /t,
i€[K] i€[K]
Q(t)=
argmaxtw; (t — 1) — T;(t — 1), otherwise.
i€[K]

@ Stopping Rule: Stop when the numbers of times all arms are pulled

satisfy
Ts = min {t e N: Z(t) > p(t, 9, a)}.
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HT&S Algorithm: An improved T&S Algorithm

@ Sampling Rule: Estimate the number of times each arm should be

sampled

argmin T;(t — 1), min T;(t — 1) < Vt,
i€[K] iG[K]
Q(t)=

argmaxtw; (t — 1) — T;(t — 1), otherwise.
i€[K]

@ Stopping Rule: Stop when the numbers of times all arms are pulled

satisfy
Ts = min {t e N: Z(t) > p(t, 9, a)}.

o Heteroscedasticity: Considered in w'(t — 1) and Z(t).
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Sample Complexity Analysis of 2PHT&S
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Sample Complexity Analysis of 2PHT&S

Theorem (Performance of 2PHT&S)
Let

s = (N(ui,2030%), ..., N (g, 2u%0%))  and
b= (N(Msfu)aQst(l)ff )y s N (13, 20y 212,2.07))

be the super arm and base arm heteroscedastic Gaussian bandits in
Phase | and Phase Il, where

:th(ka)z

kESg

.
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Sample Complexity Analysis of 2PHT&S

Theorem (Performance of 2PHT&S)
Let

s = (N(ui,2030%), ..., N (g, 2u%0%))  and
b= (N(Msfu)aQst(l)ff )y s N (13, 20y 212,2.07))

be the super arm and base arm heteroscedastic Gaussian bandits in
Phase | and Phase Il, where

:th(ka)z

kESg

Using 2PHT&S, we obtain
E[r2PHT&S]

lim sup

I < Cgfl + C—17
50 log(1/0) — °

where C; and G, are hardness parameters of Phase | and Phase Il resp.

v
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Simulation Results

Experiment Setup

Massive mmWave MISO system;

@ Base station equipped with N = 64 transmit antennas serving a
single-antenna user;

Size of codebook is set as K = 128.
Correlation Length J =2 {%1 —-1=3.
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Simulation Results

Experiment Setup

@ Massive mmWave MISO system;

@ Base station equipped with N = 64 transmit antennas serving a
single-antenna user;

@ Size of codebook is set as K = 128.
o Correlation Length J =2 {%1 —-1=3.

Baseline Algorithms

@ Original Track-and-Stop (T&S) algorithm (Garivier and Kaufmann,
2016);

@ HT&S algorithm;
@ Two-phase Track-and-Stop (2PT&S) algorithm.
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Simulated Scenario for 4 = 0.1 and
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Figure 2: Mean of the reward of each base arm and super arm in (p = 10dBm).
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Figure 2: Mean of the reward of each base arm and super arm in (p = 10dBm).

Table 2: Average sample complexities for § = 0.1, averaged over 100 experiments.

Power 4 6 8 10 12

T&S 1154.3 +338.7 | 654.6 +212.1 | 382.5 +1206 | 209.4+68.6 | 133.7 +s.9

HT&S 473.2 +275.5 | 271.4 +143.4 | 175.6 +69.2 | 133.2 +24.1 | 123.9 165
2PT&S 206.2 +60.4 120.2 +35.0 68.4 +19.4 49.1 +a6 452 +1.1
2HPT&S 84.3 +41.5 58.0 +19.6 48.4 +6.3 455 +1.6 45 +o
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Practical Scenario: Generated using Wireless InSite
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Figure 3: (Left) Practical beam alignment in a city; (Right) Means of the rewards
of each base and super arm. Sample complexities for 6 = 0.1 shown below.
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Practical Scenario: Generated using Wireless InSite
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Figure 3: (Left) Practical beam alignment in a city; (Right) Means of the rewards
of each base and super arm. Sample complexities for § = 0.1 shown below.
Power 4 6 8 10 12
T&S 840.6 +331.1 | 540.5.9 +190.9 | 339.1 +138.8 | 231.1 +o5.8 | 162.7 +59.6
HT&S 515.5 +305.1 345.2 t186.4 253.9 +122.6 | 176.1 £71.1 | 141.3 1450
2PT&S 189.9 +43.2 119.1 +29.8 138.8 +82.8 55.8 +18.4 45.4 +3.9
2PHT&S 74.4 1339 57.6 +20.6 50.7 +14.9 45.8 +5.5 45 +o
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Conclusions

@ Adapted multi-armed bandit framework to beam alignment.

@ Exploited structure to get improved results over naive techniques.
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Conclusions

@ Adapted multi-armed bandit framework to beam alignment.

@ Exploited structure to get improved results over naive techniques.

> Phase K base arms divi?ed into G arm sets
K ["Jbase arms )
basearms @ @ ® .. @] .. [0 0@ .. 0| (000 0| .. (000 - 0
G { . ] 1 . J o . J L . )
super arms © g ® - - 0

l Choose the super arm g*

»Phase 11 G super arms

@ @ ] e

superarm g*—1/g*+1 l [ super arm g*

2] basye arms
jeoe . 00

Choose the optimal base arm k*
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