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Multi-Armed Bandits (MAB)

Objectives

1 Maximize the cumulative reward over a fixed horizon ⇒
Exploration-Exploitation tradeoff.

2 Our focus: Find the best arm or arms (largest expected reward(s))
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Background: Multi-Objective Optimization

Consider a K = 3 arm bandit problem.

There are M = 2 users.

Each user has their own preference.

Aim to find i∗1 , . . . , i
∗
M ∈ [K ] via bandit feedback.
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Problem Statement

Arm set: [K ] = {1, . . . ,K};

Objective set: [M] = {1, . . . ,M};
Confidence level: δ ∈ (0, 1);

Mean reward of arm i ∈ [K ] under objective m ∈ [M]: µi ,m ∈ R;
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Problem Statement

I ∗ = (i∗1 , · · · , i∗M) ∈ [K ]M is the vector of best arms, where

i∗m = arg max
i∈[K ]

µi ,m.

For t ∈ N, agent pulls arm At ∈ [K ] and obtains M rewards

XAt ,m(t) ∼ N (µAt ,m, 1) ∀m ∈ [M].

Based on the history of arm pulls and rewards up to time t, agent can
decide whether to stop at the time step t.

After stopping, agent recommends the empirically best arms îm.

Objective:

min
π

E[τδ] s.t. P(Î 6= I ∗) ≤ δ,

where Î = (î1, · · · , îM) is the recommendation at the stopping time.
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E[τδ] s.t. P(Î 6= I ∗) ≤ δ,
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E[τδ] s.t. P(Î 6= I ∗) ≤ δ,
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Lower Bound

Policy and Error Probability: π = {πt}∞t=1 and δ

Arm Pulling Strategy at time t: At ∈ σ
(
{As ,XAs ,1, . . . ,XAs ,M}t−1

s=1

)
;

Stopping Time: τδ;

Final Recommendation: Îδ ∈ [K ]M .
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Lower Bound

Information-Theoretic Lower Bound

For any sequence of δ-PAC policies {πδ}δ∈(0,1),

lim inf
δ→0+

Eπv [τδ]

log( 1
δ )
≥ c∗(v) ∀ instances v ,

where c∗(v) is given by

c∗(v)−1 := sup
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))
. (1)

Unknown gaps ∆i ,m(v) .

In (1), Γ denotes the set of probability distributions on [K ].

Let ω∗ ∈ Γ attain the maximum of “sup” in (1).

Then, ω∗ represents the optimal proportion of arm pulls!
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Methodology: A Possible Solution

Calculate

ω∗ = arg max
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))

Then, a natural algorithm is to pull arms by empirical values of ω∗.

Update empirical means

Pull each arm once

Empirical proportion                   Pull arms fitting  
<latexit sha1_base64="GIgQcZr2XiYAJ4n3kDCxTrSa7ic=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9BLx4jmAdkl9A7mU2GzGOZmRXCkt/w4kERr/6MN//GSbIHjRY0FFXddHfFKWfG+v6XV1pb39jcKm9Xdnb39g+qh0cdozJNaJsornQvBkM5k7RtmeW0l2oKIua0G09u5373kWrDlHyw05RGAkaSJYyAdVIYjsHmoRJ0BLNBtebX/QXwXxIUpIYKtAbVz3CoSCaotISDMf3AT22Ug7aMcDqrhJmhKZAJjGjfUQmCmihf3DzDZ04Z4kRpV9LihfpzIgdhzFTErlOAHZtVby7+5/Uzm1xHOZNpZqkky0VJxrFVeB4AHjJNieVTR4Bo5m7FZAwaiHUxVVwIwerLf0nnoh406o37y1rzpoijjE7QKTpHAbpCTXSHWqiNCErRE3pBr17mPXtv3vuyteQVM8foF7yPb2pTkfM=</latexit>

ω̂
<latexit sha1_base64="GIgQcZr2XiYAJ4n3kDCxTrSa7ic=">AAAB83icbVDLSgNBEJyNrxhfUY9eBoPgKeyKRI9BLx4jmAdkl9A7mU2GzGOZmRXCkt/w4kERr/6MN//GSbIHjRY0FFXddHfFKWfG+v6XV1pb39jcKm9Xdnb39g+qh0cdozJNaJsornQvBkM5k7RtmeW0l2oKIua0G09u5373kWrDlHyw05RGAkaSJYyAdVIYjsHmoRJ0BLNBtebX/QXwXxIUpIYKtAbVz3CoSCaotISDMf3AT22Ug7aMcDqrhJmhKZAJjGjfUQmCmihf3DzDZ04Z4kRpV9LihfpzIgdhzFTErlOAHZtVby7+5/Uzm1xHOZNpZqkky0VJxrFVeB4AHjJNieVTR4Bo5m7FZAwaiHUxVVwIwerLf0nnoh406o37y1rzpoijjE7QKTpHAbpCTXSHWqiNCErRE3pBr17mPXtv3vuyteQVM8foF7yPb2pTkfM=</latexit>

ω̂

Chernoff 
Stopping?
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No

Yes
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Methodology: Difficulties

To derive an (asymptotically) optimal algorithm, calculate:

ω∗ = arg max
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))

Then pull arms according to the proportions in the probability vector
ω∗.

Difficulty: Difficult to obtain a closed-form solution for ω∗.

Possible Solution: Iterative numerical method to compute ω∗.

Problem: May not be provably optimal if we run the method finitely
many iterations.
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many iterations.

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 10 / 42



Methodology: MO-BAI Policy

Recall that

c∗(v)−1 = sup
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))
.

Define first-order approximation for each arm and objective g
(i ,m)
v (ω):

g
(i ,m)
v (ω) + 〈∇ωg

(i ,m)
v (ω), z − ω〉.

Define overall gradient-related function:

hv (ω, z) := min
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min
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Methodology: MO-BAI Policy

Gradient-related function

hv (ω, z) := min
m∈[M]

min
i∈[K ]\i∗m(v)

{
g

(i ,m)
v (ω) + 〈∇ωg

(i ,m)
v (ω), z − ω〉

}
.

hv (ω, z) is designed to approximate the overall objective gv (ω).

But hv (ω, z) is not a “linear approximation” of gv (ω).

We take linear approximations of the inner terms

g
(i ,m)
v (ω) + 〈∇ωg

(i ,m)
v (ω), z − ω〉.

Guide the agent to pull arms in the “direction of the gradient”.

Adapting algorithm in Wang et al. (2021) to our setting

Maintaining computational tractability and considering the KM tuples
of possible best arms
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Methodology: MO-BAI Policy

Surrogate proportion at time step t:

st := arg max
s∈Γ(η)

hv̂lt (ω̂·,t−1, s), (a Linear Program)

where

Average allocation up to time t − 1

ω̂·,t−1 :=
t−1∑
i=1

si
t − 1

.

Empirical instances at time t is v̂t

lt := maxk∈N:2k≤t 2k is to prevent the instance v̂lt from changing too
frequently.
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Methodology: MO-BAI Policy

Sampling Rule:
At ∈ arg max

i∈[K ]
[B·,t−1 + st ]i ,

where B·,t is the buffer defined as

B·,0 = 0 and B·,t = B·,t−1 − eAt + st .

Example: K = 2. At time t = 1, suppose

s1 =

[
0.1
0.9

]
=⇒ pull arm 2 =⇒ B·,1 =

[
0.1
−0.1

]
At time t = 2, suppose

s2 =

[
0.5
0.5

]
B·,1+s2 =

[
0.6
0.4

]
=⇒ pull arm 1 =⇒ B·,2 =

[
0.4
−0.4

]
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Methodology: MO-BAI Policy

Sampling Rule Pipeline
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Methodology: MO-BAI Policy

Stopping Rule:

Chernoff’s stopping rule (Kaufmann et al., 2016) inspired by our
previous work (Chen et al., 2023).

Let

Z (t) := min
m∈[M]

min
i∈[K ]\îm(t)

Ni ,t Nîm(t),t ∆̂2
i ,m(t)

2(Ni ,t + N
îm(t),t

)︸ ︷︷ ︸
approx of g

(i,m)
v (ω)

The stopping time of MO-BAI is

τδ = min{t ≥ K : Z (t) > β(t, δ)},

where β(t, δ) is a carefully tuned threshold.
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Theoretical Results

Proposition: δ-PACness

Fix δ ∈ (0, 1). Then, MO-BAI is δ-PAC, i.e., for all instances v ,

PMO-BAI
v (τδ < +∞) = 1 and

PMO-BAI
v

(
Îδ = I ∗(v)

)
≥ 1− δ.

Theorem: Asymptotic Optimality

Under MO-BAI, for all instances v ,

lim sup
δ→0+

EMO-BAI
v [τδ]

log( 1
δ )

≤ c∗(v).
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Numerical Study on Synthetic Dataset
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Figure 1: Average τδ of MO-BAI and Multi-Objective adaptation of D-Tracking

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 18 / 42



Numerical Study on Synthetic Dataset

0 50 100 150 200 250 300 350 400 450 500
log(1/δ)

0

5000

10000

15000

20000

25000
S

to
pp

in
g

ti
m

e
MO-BAI

Lower bound

Figure 1: Average τδ of MO-BAI and Multi-Objective adaptation of D-Tracking

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 18 / 42



Numerical Study on Synthetic Dataset

0 50 100 150 200 250 300 350 400 450 500
log(1/δ)

0

10000

20000

30000

S
to

pp
in

g
ti

m
e

Baseline (iter= 5)

MO-BAI

Lower bound

Figure 1: Average τδ of MO-BAI and Multi-Objective adaptation of D-Tracking

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 18 / 42



Numerical Study on Synthetic Dataset

0 50 100 150 200 250 300 350 400 450 500
log(1/δ)

0

10000

20000

30000

S
to

pp
in

g
ti

m
e

Baseline (iter= 5)

Baseline (iter= 20)

MO-BAI

Lower bound

Figure 1: Average τδ of MO-BAI and Multi-Objective adaptation of D-Tracking

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 18 / 42



Numerical Study on the SNW Dataset

δ = 0.1 δ = 0.05

MO-BAI 968.82± 58.21 1, 023.77± 67.42

Baseline 4, 485.98± 124.92 6, 168.29± 132.01
Baseline-Non-Unif 3, 841.05± 136.44 4, 320.55± 128.26

MO-SE 2, 322.39± 461.54 2, 411.16± 421.88

Table 1: Average stopping times obtained by running 100 independent trials with
δ ∈ {0.1, 0.05} for the SNW dataset. In Baseline and Baseline-Non-Unif,
we set iter = 20.
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Conclusion for MO-BAI

Multi-Objective Best Arm Identification problem with fixed-confidence

M = 2, K = 3

0.8 0.1 0.3

0.1 0.2 0.9
i∗1 = 1 , i∗2 = 3

Pulling arm At yields a vector of rewards

XAt ,m(t) ∼ N (µAt ,m, 1) ∀m ∈ [M].

Derived an asymptotically optimal and efficient algorithm

c∗(v) ≤ lim inf
δ→0+

Eπv [τδ]

log( 1
δ )
≤ lim sup

δ→0+

EMO-BAI
v [τδ]

log( 1
δ )

≤ c∗(v) .
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From Theory to Applications

How can we apply the theory to real-world
wireless communication systems?

Zhejiang University HKUST (Guangzhou)
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Beam Alignment
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Beams at Tx and Rx are narrow directional.

Beam Alignment ensures Tx and Rx beams are accurately aligned to
establish a reliable communication link.
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Beam Alignment

Fundamental challenges

Receiver

Transmitter

180

150

120

90

60

30

0

CSI

➢ One channel measurement—estimate channel state 

information (CSI) corresponding to each state for each 

transmitter-receiver pair)

➢ Amount and the frequency of the channel measurement 

BA latency

Number of Antennas

Number of Beams

Channel state information for each Tx-Rx pair is measured.

Frequency of measurement is high due to mobility.

Results in beam alignment latency which increases with the number
of antennas at the Rx and Tx.
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Beam Alignment as Multi-Armed Bandits

…

Environment

arm 𝟏 arm 𝟐 arm 𝑲

Agent

Action Reward

Exploitation Exploration
Which arm to pull in each step?

Pure Exploration: Identify the arm with the largest mean using as few
samples as possible.

Idea: Formulate the beam alignment problem as a pure exploration
problem with the objective of minimizing the required time steps in the
fixed-confidence setting.
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System Model: A mmWave massive MISO system

User

BS

Massive mmWave MISO system: a base station (BS) equipped
with N transmit antennas serves a single-antenna user.

Saleh–Valenzuela channel model (limited propagation path in
mmWave channel)

1 line-of-sight (LoS) path L − 1 non-LoS (NLoS) paths≥
Amplitude
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Transmission Scheme

Coherence time: Channels stay constant

(𝑇 time slots)

Beam Alignment

Phase

Data Transmission

Phase

Beam Alignment

Phase

Data Transmission

Phase

(𝑇𝐵 time slots) (𝑇𝐷 time slots)

… …

Beam alignment phase: Finds the optimal beam from the codebook

C = {fk = a(−1 + 2k/K ) : k = 0, 1, . . . ,K − 1}

where the array response vector is

a(x) =
1√
N

[
1, e j

2π
λ
dx , e j

2π
λ

2dx , . . . , e j
2π
λ

(N−1)dx
]
∈ CN .

Data transmission phase: Base station transmits the data using the
selected f ∗ ∈ C. Received signal at the user in time slot t:

yt =
√
p hHf ∗st + nt t ∈ N.
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Beam Alignment Phase

System Throughput Performance: Effective achievable rate

Reff ,
(

1− TB

TD

)
log
(

1 +
p|hHf ∗|2

σ2

)
TB should be minimized to maximize Reff.

Measurement: Received signal power if fk is chosen:
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Properties of/Assumptions on Beam Alignment Problem

Beam Alignment Pure Exploration in MAB

Find the optimal beam 
as soon as possible

Find the optimal beam 
as soon as possible

beams base arms

received signal power rewards

Properties: Let µ = (µ1, . . . , µK ), and let µ(1) ≥ µ(2) ≥ . . . ≥ µ(K).

1. The means of the reward associated with arms k and i , where
|i − k | ≤ J/2, are close.

2. There are K − LJ arms that have approximately mean zero rewards,
i.e., µ(LJ+1) ≈ µ(LJ+2) ≈ . . . ≈ µ(K) ≈ 0.

3. The variance each arm is related to its mean as follows: σ2
k = 2µkσ

2.
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Group Property

1
J

-resolution beam codebook

Constructed by grouping the nearby beams in the codebook C

C(J) ,

bg =

Jg∑
k=J(g−1)+1

fk

∣∣∣∣ g = 0, 1, . . . ,G − 1



Received power for beam bg (a super arm)

Rg = p|hHbg |2 + 2
√
p<(hHbgn

∗),

follows a heteroscedastic Gaussian distribution.

Information of a set of beams can be obtained at each time step.
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Bandit Beam Alignment Problem Setup

Bandit Beam Alignment Problem

K base arms [K ] , {1, . . . ,K}: each associated with the beam fk ;

{[K ], J}: set of all non-empty consecutive tuples of length ≤ J

Example: {[6], 2} =
{{1}, {1, 2}, {2}, {2, 3}, {3}, {3, 4}, {4}, {4, 5}, {5}, {5, 6}, {6}}

(K , J)-super arm: Each tuple in {[K ], J} is associated with

bg =

Jg∑
k=J(g−1)+1

fk ∈ C(J).
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Bandit Beam Alignment Problem Setup

At time step t

Choose an action (or a (K , J)-super arm) A(t) ∈ {[K ], J}.
Observe the reward

R(A(t)) = F
( ∑

k∈A(t)

fk , p,h, nt
)

where
F(f , p,h, n) = p|hHf |2 + 2

√
p<(hHf n∗)

Note that for a given superarm A ∈ {[K ], J}, the reward R(A) is

R(A) ∼ N (µA, 2µAσ
2) and µA = p

∣∣∣∣∣hH
∑
k∈A

fk

∣∣∣∣∣
2

,

which is a heteroscedastic Gaussian distribution.
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Bandit Beam Alignment Problem Setup

Algorithm: π := {(πt)t , τπ, ψπ, J}

Sampling rule πt : determines the (K , J)-super arm A(t) to pull at
time step t based on the observation history and the arm history

Ht−1 =
{
A(1),R(1),A(2),R(2), · · · ,A(t − 1),R(t − 1)

}
.

Stopping rule: leads to a stopping time τπ satisfying

P(τπ < +∞) = 1.

Recommendation rule ψπ: outputs a base arm kπ ∈ [K ].

Aim: Use as few samples as possible to output an arm that is optimal
with probability at least 1− δ.
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Information-Theoretic Lower Bound

Heteroscedastic Gaussian bandit instance:

ν =
(
N (µν1 , 2µ

ν
1σ

2), · · · ,N (µνK , 2µ
ν
Kσ

2)
)
.

Optimal arm A∗(ν) = arg maxk∈[K ] µ
ν
k .

Theorem (Lower Bound)

For any (δ, J)-PAC algorithm,

Eπ[τδ] ≥ c∗(ν) log

(
1

4δ

)
,

where

c∗(ν)−1 = sup
w∈Γ

inf
u∈Alt(ν)

( K∑
k=1

wkDHG(µνk , µ
u
k)
)
,

where DHG is the KL-divergence between two heteroscedastic Gaussians.
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Two-Phase Track & Stop (2PHT&S) Algorithm

Main Idea: Exploit prior knowledge:

Correlation

Heteroscedasticity

Group property

➢Phase 𝐼

➢Phase 𝐼𝐼

𝐺
super arms

𝐾
base arms … … … …… …

𝐾 base arms divided into 𝐺 arm sets

𝐽 base arms

Choose the super arm 𝑔∗Choose the super arm 

𝑔∗ − 1 / 𝑔∗ + 1

…

Choose the optimal base arm 𝑘∗

2𝐽 base arms

… … …
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Two-Phase Track & Stop (2PHT&S): Phase I

➢Phase 𝐼

𝐺
super arms

𝐾
base arms … … … …… …

𝐾 base arms divided into 𝐺 arm sets

𝐽 base arms

Choose the super arm 𝑔∗

… …

Phase I: Search for the optimal super arm with probability ≥ 1− δ1

Group K base arms into G arm sets to reduce the search space

Choose one super arm (beam group) by the sampling rule of HT&S

Use the grouped beam to transmit the pilot symbols and observe

Rg (t) = F
( ∑

k∈Sg

fk , p,h, nt
)
.

Select the optimal super arm

g∗ = arg max
g∈[G ]

E[Rg (t)].
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Two-Phase Track & Stop (2PHT&S): Phase II

➢Phase 𝐼𝐼 𝐺 super arms

super arm 𝑔∗super arm 𝑔∗ − 1 / 𝑔∗ + 1

…

Choose the optimal base arm 𝑘∗

2𝐽 base arms

… …

Phase II: Search for the optimal base arm with probability ≥ 1− δ2

Construct a base arm set, including the optimal super arm and its
neighboring super arm

Search the optimal base arm in the base arm set using the HT&S
algorithm
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HT&S Algorithm: An improved T&S Algorithm

Sampling Rule: Estimate the number of times each arm should be
sampled

Q(t)=


arg min
i∈[K ]

Ti (t − 1), min
i∈[K ]

Ti (t − 1) ≤
√
t,

arg max
i∈[K ]

tŵ∗i (t − 1)− Ti (t − 1), otherwise.

Stopping Rule: Stop when the numbers of times all arms are pulled
satisfy

τδ = min
{
t ∈ N : Z (t) ≥ β(t, δ, α)

}
.

Heteroscedasticity: Considered in ŵ∗i (t − 1) and Z (t).
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Sample Complexity Analysis of 2PHT&S

Theorem (Performance of 2PHT&S)

Let
s =

(
N (µs1, 2µ

s
1σ

2), . . . ,N (µsG , 2µ
s
Gσ

2)
)

and

b =
(
N (µbSf (1), 2µ

b
Sf (1)σ

2), . . . ,N (µbSf (2J), 2µ
b
Sf (2J)σ

2)
)

be the super arm and base arm heteroscedastic Gaussian bandits in
Phase I and Phase II, where

µsg = p

∣∣∣∣hH
( ∑

k∈Sg

fk
)∣∣∣∣2.

Using 2PHT&S, we obtain

lim sup
δ→0

E[τ2PHT&S]

log(1/δ)
≤ C−1

s + C−1
b ,

where Cs and Cb are hardness parameters of Phase I and Phase II resp.
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Simulation Results

Experiment Setup

Massive mmWave MISO system;

Base station equipped with N = 64 transmit antennas serving a
single-antenna user;

Size of codebook is set as K = 128.

Correlation Length J = 2
⌈
K
N

⌉
− 1 = 3.

Baseline Algorithms

Original Track-and-Stop (T&S) algorithm (Garivier and Kaufmann,
2016);

HT&S algorithm;

Two-phase Track-and-Stop (2PT&S) algorithm.
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Simulated Scenario for δ = 0.1 and δ1 = δ2 = δ
2
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Figure 2: Mean of the reward of each base arm and super arm in (p = 10dBm).

Table 2: Average sample complexities for δ = 0.1, averaged over 100 experiments.
Power 4 6 8 10 12

T&S 1154.3 ±338.7 654.6 ±212.1 382.5 ±129.6 209.4±68.6 133.7 ±8.9

HT&S 473.2 ±275.5 271.4 ±143.4 175.6 ±69.2 133.2 ±24.1 123.9 ±6.5

2PT&S 206.2 ±60.4 120.2 ±35.0 68.4 ±19.4 49.1 ±4.6 45.2 ±1.1

2HPT&S 84.3 ±41.5 58.0 ±19.6 48.4 ±6.3 45.5 ±1.6 45 ±0
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Practical Scenario: Generated using Wireless InSite

𝑥

𝑦

𝑧

(1000m,0,0)

(0,1000m,0)

(0,0,100m)

Figure 3: (Left) Practical beam alignment in a city; (Right) Means of the rewards
of each base and super arm. Sample complexities for δ = 0.1 shown below.

Power 4 6 8 10 12

T&S 840.6 ±331.1 540.5.9 ±190.9 339.1 ±138.8 231.1 ±95.8 162.7 ±59.6

HT&S 515.5 ±305.1 345.2 ±186.4 253.9 ±122.6 176.1 ±71.1 141.3 ±45.0

2PT&S 189.9 ±43.2 119.1 ±29.8 138.8 ±82.8 55.8 ±18.4 45.4 ±3.9

2PHT&S 74.4 ±33.9 57.6 ±20.6 50.7 ±14.9 45.8 ±5.5 45 ±0

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 41 / 42



Practical Scenario: Generated using Wireless InSite

𝑥

𝑦

𝑧

(1000m,0,0)

(0,1000m,0)

(0,0,100m)

Figure 3: (Left) Practical beam alignment in a city; (Right) Means of the rewards
of each base and super arm. Sample complexities for δ = 0.1 shown below.

Power 4 6 8 10 12

T&S 840.6 ±331.1 540.5.9 ±190.9 339.1 ±138.8 231.1 ±95.8 162.7 ±59.6

HT&S 515.5 ±305.1 345.2 ±186.4 253.9 ±122.6 176.1 ±71.1 141.3 ±45.0

2PT&S 189.9 ±43.2 119.1 ±29.8 138.8 ±82.8 55.8 ±18.4 45.4 ±3.9

2PHT&S 74.4 ±33.9 57.6 ±20.6 50.7 ±14.9 45.8 ±5.5 45 ±0

Vincent Tan (NUS) BAI: Multi-Objectives and Wireless Mar 2025 41 / 42



Conclusions

Adapted multi-armed bandit framework to beam alignment.

Exploited structure to get improved results over näıve techniques.

➢Phase 𝐼

𝐺
super arms

𝐾
base arms … … … …… …

𝐾 base arms divided into 𝐺 arm sets

𝐽 base arms

Choose the super arm 𝑔∗

… …

➢Phase 𝐼𝐼 𝐺 super arms

super arm 𝑔∗super arm 𝑔∗ − 1 / 𝑔∗ + 1

…

Choose the optimal base arm 𝑘∗

2𝐽 base arms

… …
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