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Background: Multi-Objective Optimization

Consider a K = 3 arm bandit problem.

There are M = 2 users.

Each user has their own preference.

Aim to find i∗1 , . . . , i
∗
M ∈ [K ] via bandit feedback.
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Problem Statement

Arm set: [K ] = {1, . . . ,K};

Objective set: [M] = {1, . . . ,M};
Confidence level: δ ∈ (0, 1);

Mean reward of arm i ∈ [K ] under objective m ∈ [M]: µi ,m ∈ R;
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Problem Statement

I ∗ = (i∗1 , · · · , i∗M) ∈ [K ]M is the vector of best arms, where

i∗m = arg max
i∈[K ]

µi ,m.

For t ∈ N, agent pulls arm At ∈ [K ] and obtains M rewards

XAt ,m(t) ∼ N (µAt ,m, 1) ∀m ∈ [M].

Based on the history of arm pulls and rewards up to time t, agent can
decide whether to stop at the time step t.

Once the agent stops, it recommends the empirically best arm îm for
each objective m ∈ [M].

Objective:

min
π

E[τδ] s.t. P(Î 6= I ∗) ≤ δ,

where Î = (î1, · · · , îM) is the recommendation at the stopping time.
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Lower Bound

Policy: π

Arm Pulling Strategy: At ∈ σ
(
{As ,XAs ,1, . . . ,XAs ,M}t−1

s=1

)
;

Error Probability: δ ∈ (0, 1);

Stopping Time: τδ;

Final Recommendation: Îδ ∈ [K ]M .
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Given instance v , the gap of arm i ∈ [K ] under objective m ∈ [M] is

∆i ,m(v) = µi∗m,m − µi ,m.
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Lower Bound

Information-Theoretic Lower Bound

For any sequence of δ-PAC policies {πδ}δ∈(0,1),

lim inf
δ→0+

Eπv [τδ]

log( 1
δ )
≥ c∗(v) ∀ instances v ,

where c∗(v) is given by

c∗(v)−1 := sup
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))
. (1)

Unknown gaps ∆i ,m(v) .

In (1), Γ denotes the set of probability distributions on [K ].

Let ω∗ ∈ Γ attain the maximum of “sup” in (1).

Then, ω∗ represents the optimal proportion of arm pulls!
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Methodology: Overview

To derive an (asymptotically) optimal algorithm, calculate:

ω∗ = arg max
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))

Then pull arms according to ω∗.

Difficulty: Difficult to obtain a closed-form solution for ω∗.

Possible Solution: Iterative numerical method to compute ω∗.

Problem: May not be provably optimal if we run the method finitely
many iterations.
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Methodology: MO-BAI Policy

Recall that

c∗(v)−1 = sup
ω∈Γ

min
m∈[M]

min
i∈[K ]\i∗m(v)

ωi ωi∗m(v) ∆2
i ,m(v)

2(ωi + ωi∗m(v))
.

Define first-order approximation for each arm and objective g
(i ,m)
v (ω):

g
(i ,m)
v (ω) + 〈∇ωg (i ,m)

v (ω), z− ω〉.

Define overall gradient-related function:

hv (ω, z) := min
m∈[M]

min
i∈[K ]\i∗m(v)

{
g

(i ,m)
v (ω) + 〈∇ωg (i ,m)

v (ω), z− ω〉
}
.
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Methodology: MO-BAI Policy

Gradient-related function

hv (ω, z) := min
m∈[M]

min
i∈[K ]\i∗m(v)

{
g

(i ,m)
v (ω) + 〈∇ωg (i ,m)

v (ω), z− ω〉
}
.

hv (ω, z) is designed to approximate the overall objective gv (ω).

But hv (ω, z) is not a “linear approximation” of gv (ω).

We take linear approximations of the inner terms

g
(i ,m)
v (ω) + 〈∇ωg (i ,m)

v (ω), z− ω〉.

Guide the agent to pull arms in the “direction of the gradient”.

Adapting algorithm in Wang et al. (2021) to our setting

Maintaining computational tractability and considering the KM tuples
of possible best arms
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We take linear approximations of the inner terms

g
(i ,m)
v (ω) + 〈∇ωg (i ,m)

v (ω), z− ω〉.

Guide the agent to pull arms in the “direction of the gradient”.

Adapting algorithm in Wang et al. (2021) to our setting

Maintaining computational tractability and considering the KM tuples
of possible best arms
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Methodology: MO-BAI Policy

Surrogate proportion at time step t:

st := arg max
s∈Γ(η)

hv̂lt (ω̂·,t−1, s), (a Linear Program)

where

Average allocation up to time t − 1

ω̂·,t−1 :=
t−1∑
i=1

si
t − 1

.

Empirical instances at time t is v̂t

lt := maxk∈N:2k≤t 2k is to prevent the instance v̂lt from changing too
frequently.
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Methodology: MO-BAI Policy

Sampling Rule:
At ∈ arg max

i∈[K ]
[B·,t−1 + st ]i ,

where B·,t is the buffer defined as

B·,0 = 0 and B·,t = B·,t−1 − eAt + st .

Example: K = 2. At time t = 1, suppose

s1 =

[
0.1
0.9

]
=⇒ pull arm 2 =⇒ B·,1 =

[
0.1
−0.1

]
At time t = 2, suppose

s2 =

[
0.5
0.5

]
B·,1 + s2 =

[
0.6
0.4

]
=⇒ pull arm 1 =⇒ B·,2 =

[
0.4
−0.4

]
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Sampling Rule Pipeline
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Methodology: MO-BAI Policy

Stopping Rule:

Chernoff’s stopping rule (Kaufmann et al., 2016) inspired by Chen et
al. (2023).

Let

Z (t) := min
m∈[M]

min
i∈[K ]\îm(t)

Ni ,t Nîm(t),t ∆̂2
i ,m(t)

2(Ni ,t + N
îm(t),t

)︸ ︷︷ ︸
approx of g

(i,m)
v (ω)

The stopping time of MO-BAI is

τδ = min{t ≥ K : Z (t) > β(t, δ)},

where β(t, δ) is a carefully chosen threshold.
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Theoretical Results

Proposition: δ-PACness

Fix δ ∈ (0, 1). Then, MO-BAI is δ-PAC, i.e., for all instances v ,

PMO-BAI
v (τδ < +∞) = 1 and

PMO-BAI
v

(
Îδ = I ∗(v)

)
≥ 1− δ.

Theorem: Asymptotic Optimality

Under MO-BAI, for all instances v ,

lim sup
δ→0+

EMO-BAI
v [τδ]

log( 1
δ )

≤ c∗(v) and

PMO-BAI
v

(
lim sup
δ→0+

τδ

log( 1
δ )
≤ c∗(v)

)
= 1.
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Numerical Study on Synthetic Dataset

0 50 100 150 200 250 300 350 400 450 500
log(1/δ)

0

5000

10000

15000

20000

25000
S

to
pp

in
g

ti
m

e
Lower bound

Figure 1: Average τδ of MO-BAI and Multi-Objective adaptation of D-Tracking
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Numerical Study on the SNW Dataset

δ = 0.1 δ = 0.05

MO-BAI 968.82± 58.21 1, 023.77± 67.42

Baseline 4, 485.98± 124.92 6, 168.29± 132.01
Baseline-Non-Unif 3, 841.05± 136.44 4, 320.55± 128.26

MO-SE 2, 322.39± 461.54 2, 411.16± 421.88

Table 1: Average stopping times obtained by running 100 independent trials with
δ ∈ {0.1, 0.05} for the SNW dataset. In Baseline and Baseline-Non-Unif,
we set iter = 20.
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Conclusion

Multi-Objective Best Arm Identification problem with fixed-confidence

M = 2, K = 3

0.8 0.1 0.3

0.1 0.2 0.9
i∗1 = 1 , i∗2 = 3

Pulling arm At yields a vector of rewards

XAt ,m(t) ∼ N (µAt ,m, 1) ∀m ∈ [M].

Derived an asymptotically optimal and efficient algorithm

c∗(v) ≤ lim inf
δ→0+

Eπv [τδ]

log( 1
δ )
≤ lim sup

δ→0+

EMO-BAI
v [τδ]

log( 1
δ )

≤ c∗(v) .
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