Optimal Multi-Objective Best Arm Identification with Fixed Confidence

Zhirui Chen, P. N. Karthik, Yeow Meng Chee, and Vincent Y. F. Tan

National University of Singapore, IIT Hyderabad Information Theory and Application (ITA) Workshop 2025

Feb, 2025

• Consider a K = 3 arm bandit problem.

- 3 ► ►

- Consider a K = 3 arm bandit problem.
- There are M = 2 users.

★ 3 >

- Consider a K = 3 arm bandit problem.
- There are M = 2 users.
- Each user has their own preference.

- Consider a K = 3 arm bandit problem.
- There are M = 2 users.
- Each user has their own preference.

- Consider a K = 3 arm bandit problem.
- There are M = 2 users.
- Each user has their own preference.

- Consider a K = 3 arm bandit problem.
- There are M = 2 users.
- Each user has their own preference.

- Consider a K = 3 arm bandit problem.
- There are M = 2 users.
- Each user has their own preference.

• Aim to find $i_1^*, \ldots, i_M^* \in [K]$ via bandit feedback.

• Arm set: $[K] = \{1, \dots, K\};$

< □ ▷ < @ ▷ < 별 ▷ < 별 ▷ < 별 ▷
 Feb, 2025

- Arm set: $[K] = \{1, ..., K\};$
- Objective set: $[M] = \{1, \dots, M\};$

< □ > < 同 > < 回 > < Ξ > < Ξ

- Arm set: $[K] = \{1, ..., K\};$
- Objective set: $[M] = \{1, \dots, M\};$
- Confidence level: $\delta \in (0,1)$;

→ ∃ →

- Arm set: $[K] = \{1, ..., K\};$
- Objective set: $[M] = \{1, ..., M\};$
- Confidence level: $\delta \in (0,1)$;
- Mean reward of arm $i \in [K]$ under objective $m \in [M]$: $\mu_{i,m} \in \mathbb{R}$;

• Arm set:
$$[K] = \{1, ..., K\};$$

- Objective set: $[M] = \{1, ..., M\};$
- Confidence level: $\delta \in (0, 1)$;
- Mean reward of arm $i \in [K]$ under objective $m \in [M]$: $\mu_{i,m} \in \mathbb{R}$;

• $I^* = (i_1^*, \cdots, i_M^*) \in [K]^M$ is the vector of best arms, where

$$i_m^* = \underset{i \in [K]}{\operatorname{arg max}} \mu_{i,m}.$$

Feb, 2025 4 / 17

ヘロト ヘロト ヘヨト ヘヨト

• $I^* = (i_1^*, \cdots, i_M^*) \in [K]^M$ is the vector of best arms, where $i_m^* = \underset{i \in [K]}{\arg \max \mu_{i,m}}.$

• For $t \in \mathbb{N}$, agent pulls arm $A_t \in [K]$ and obtains M rewards

 $X_{A_t,m}(t) \sim \mathcal{N}(\mu_{A_t,m},1) \quad \forall m \in [M].$

A B > A B >

• $I^* = (i_1^*, \cdots, i_M^*) \in [K]^M$ is the vector of best arms, where $i_m^* = \underset{i \in [K]}{\arg \max \mu_{i,m}}.$

• For $t \in \mathbb{N}$, agent pulls arm $A_t \in [K]$ and obtains M rewards

$$X_{A_t,m}(t) \sim \mathcal{N}(\mu_{A_t,m},1) \qquad \forall m \in [M].$$

• Based on the history of arm pulls and rewards up to time *t*, agent can decide whether to stop at the time step *t*.

• $I^* = (i_1^*, \cdots, i_M^*) \in [K]^M$ is the vector of best arms, where $i_m^* = \underset{i \in [K]}{\arg \max \mu_{i,m}}.$

• For $t \in \mathbb{N}$, agent pulls arm $A_t \in [K]$ and obtains M rewards

$$X_{A_t,m}(t) \sim \mathcal{N}(\mu_{A_t,m},1) \qquad \forall m \in [M].$$

- Based on the history of arm pulls and rewards up to time *t*, agent can decide whether to stop at the time step *t*.
- Once the agent stops, it recommends the empirically best arm î_m for each objective m ∈ [M].

• $I^* = (i_1^*, \cdots, i_M^*) \in [K]^M$ is the vector of best arms, where $i_m^* = \underset{i \in [K]}{\arg \max \mu_{i,m}}.$

• For $t \in \mathbb{N}$, agent pulls arm $A_t \in [K]$ and obtains M rewards

$$X_{A_t,m}(t) \sim \mathcal{N}(\mu_{A_t,m},1) \qquad \forall m \in [M].$$

- Based on the history of arm pulls and rewards up to time *t*, agent can decide whether to stop at the time step *t*.
- Once the agent stops, it recommends the empirically best arm î_m for each objective m ∈ [M].

• Objective:

$$\min_{\pi} \mathbb{E}[\tau_{\delta}] \quad \text{ s.t. } \quad \mathbb{P}(\widehat{I} \neq I^*) \leq \delta,$$

where $\hat{I} = (\hat{i}_1, \dots, \hat{i}_M)$ is the recommendation at the stopping time.

• Policy: π

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

• Policy: π

• Arm Pulling Strategy: $A_t \in \sigma(\{A_s, X_{A_s,1}, \dots, X_{A_s,M}\}_{s=1}^{t-1});$

・ロト ・四ト ・ ヨト ・ ヨ

- Policy: π
- Arm Pulling Strategy: $A_t \in \sigma(\{A_s, X_{A_s,1}, \dots, X_{A_s,M}\}_{s=1}^{t-1});$
- Error Probability: $\delta \in (0, 1)$;

▲ □ ▶ ▲ 三 ▶ ▲ 三

- Policy: π
- Arm Pulling Strategy: $A_t \in \sigma(\{A_s, X_{A_s,1}, \dots, X_{A_s,M}\}_{s=1}^{t-1});$
- Error Probability: $\delta \in (0,1)$;
- Stopping Time: τ_{δ} ;

▲ 藻 ▶ ▲

- Policy: π
- Arm Pulling Strategy: $A_t \in \sigma(\{A_s, X_{A_s,1}, \dots, X_{A_s,M}\}_{s=1}^{t-1});$
- Error Probability: $\delta \in (0,1)$;
- Stopping Time: τ_{δ} ;
- Final Recommendation: $\widehat{l}_{\delta} \in [K]^M$.

- Policy: π
- Arm Pulling Strategy: $A_t \in \sigma(\{A_s, X_{A_s,1}, \dots, X_{A_s,M}\}_{s=1}^{t-1});$
- Error Probability: $\delta \in (0, 1)$;
- Stopping Time: τ_{δ} ;
- Final Recommendation: $\widehat{l}_{\delta} \in [K]^M$.

Definition

A policy π is δ -PAC if it returns the vector of best arms w.p. $\geq 1 - \delta$ in finite time, i.e., for all instances v,

$$\mathbb{P}^{\pi}_{
u}(au_{\delta}<+\infty)=1 \qquad ext{and} \qquad \mathbb{P}^{\pi}_{
u}(\widehat{l_{\delta}}=l^{\star}(
u))\geq 1-\delta.$$

- Policy: π
- Arm Pulling Strategy: $A_t \in \sigma(\{A_s, X_{A_s,1}, \dots, X_{A_s,M}\}_{s=1}^{t-1});$
- Error Probability: $\delta \in (0, 1)$;
- Stopping Time: τ_{δ} ;
- Final Recommendation: $\widehat{l}_{\delta} \in [K]^M$.

Definition

A policy π is δ -PAC if it returns the vector of best arms w.p. $\geq 1 - \delta$ in finite time, i.e., for all instances v,

$$\mathbb{P}^{\pi}_{\nu}(au_{\delta}<+\infty)=1 \qquad ext{and} \qquad \mathbb{P}^{\pi}_{\nu}(\widehat{l_{\delta}}=l^{\star}(
u))\geq 1-\delta.$$

Definition

Given instance v, the gap of arm $i \in [K]$ under objective $m \in [M]$ is

$$\Delta_{i,m}(v) = \mu_{i_m^*,m} - \mu_{i,m}.$$

Vincent Tan (NUS)

Information-Theoretic Lower Bound

For any sequence of δ -PAC policies $\{\pi_{\delta}\}_{\delta \in (0,1)}$,

$$\liminf_{\delta \to 0^+} \frac{\mathbb{E}_{\boldsymbol{v}}^{\pi}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \geq c^*(\boldsymbol{v}) \qquad \forall \text{ instances } \boldsymbol{v},$$

where $c^*(v)$ is given by $c^*(v)^{-1} \coloneqq \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(v)} \frac{\omega_i \omega_{i_m^*(v)} \Delta_{i,m}^2(v)}{2(\omega_i + \omega_{i_m^*(v)})}.$

< Ξ ► < Ξ ►

(1)

Information-Theoretic Lower Bound

For any sequence of δ -PAC policies $\{\pi_{\delta}\}_{\delta \in (0,1)}$,

$$\liminf_{\delta \to 0^+} \frac{\mathbb{E}_{\nu}^{\pi}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \ge c^*(\nu) \qquad \forall \text{ instances } \nu,$$

where $c^*(v)$ is given by

$$c^{*}(v)^{-1} := \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_{m}^{*}(v)} \frac{\omega_{i} \omega_{i_{m}^{*}(v)} \Delta_{i,m}^{2}(v)}{2(\omega_{i} + \omega_{i_{m}^{*}(v)})}.$$
 (1)

• Unknown gaps $\Delta_{i,m}(v)$.

< ∃ > < ∃

Information-Theoretic Lower Bound

For any sequence of δ -PAC policies $\{\pi_{\delta}\}_{\delta \in (0,1)}$,

$$\liminf_{\delta \to 0^+} \frac{\mathbb{E}_{\boldsymbol{v}}^{\pi}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \geq c^*(\boldsymbol{v}) \qquad \forall \text{ instances } \boldsymbol{v},$$

where $c^*(v)$ is given by

$$c^{*}(v)^{-1} := \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_{m}^{*}(v)} \frac{\omega_{i} \omega_{i_{m}^{*}(v)} \Delta_{i,m}^{2}(v)}{2(\omega_{i} + \omega_{i_{m}^{*}(v)})}.$$
(1)

• Unknown gaps $\Delta_{i,m}(v)$.

• In (1), Γ denotes the set of probability distributions on [K].

Information-Theoretic Lower Bound

For any sequence of δ -PAC policies $\{\pi_{\delta}\}_{\delta \in (0,1)}$,

$$\liminf_{\delta \to 0^+} \frac{\mathbb{E}_{\nu}^{\pi}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \geq c^*(\nu) \qquad \forall \text{ instances } \nu,$$

where $c^*(v)$ is given by

$$c^{*}(v)^{-1} := \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_{m}^{*}(v)} \frac{\omega_{i} \omega_{i_{m}^{*}(v)} \Delta_{i,m}^{2}(v)}{2(\omega_{i} + \omega_{i_{m}^{*}(v)})}.$$
(1)

- Unknown gaps $\Delta_{i,m}(v)$.
- In (1), Γ denotes the set of probability distributions on [K].
- Let $\omega^* \in \Gamma$ attain the maximum of "sup" in (1).

Information-Theoretic Lower Bound

For any sequence of δ -PAC policies $\{\pi_{\delta}\}_{\delta \in (0,1)}$,

$$\liminf_{\delta \to 0^+} \frac{\mathbb{E}_{\nu}^{\pi}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \geq c^*(\nu) \qquad \forall \text{ instances } \nu,$$

where $c^*(v)$ is given by

$$c^{*}(v)^{-1} := \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_{m}^{*}(v)} \frac{\omega_{i} \omega_{i_{m}^{*}(v)} \Delta_{i,m}^{2}(v)}{2(\omega_{i} + \omega_{i_{m}^{*}(v)})}.$$
(1)

- Unknown gaps $\Delta_{i,m}(v)$.
- In (1), Γ denotes the set of probability distributions on [K].
- Let $\omega^* \in \Gamma$ attain the maximum of "sup" in (1).
- Then, ω^* represents the optimal proportion of arm pulls!

Vincent Tan (NUS)

$$\omega^* = \underset{\omega \in \Gamma}{\operatorname{arg\,max}} \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(v)} \frac{\omega_i \, \omega_{i_m^*(v)} \, \Delta_{i,m}^2(v)}{2(\omega_i + \omega_{i_m^*(v)})}$$

Then pull arms according to ω^* .

- 4 三 ト - 4

$$\omega^* = \underset{\omega \in \Gamma}{\arg \max} \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(v)} \frac{\omega_i \, \omega_{i_m^*(v)} \, \Delta_{i,m}^2(v)}{2(\omega_i + \omega_{i_m^*(v)})}$$

Then pull arms according to ω^* .

• Difficulty: Difficult to obtain a closed-form solution for ω^* .

(a) (b) (c) (b)

$$\omega^* = \underset{\omega \in \Gamma}{\arg \max} \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(v)} \frac{\omega_i \, \omega_{i_m^*(v)} \, \Delta_{i,m}^2(v)}{2(\omega_i + \omega_{i_m^*(v)})}$$

Then pull arms according to ω^* .

- Difficulty: Difficult to obtain a closed-form solution for ω^* .
- Possible Solution: Iterative numerical method to compute ω^* .

$$\omega^* = \underset{\omega \in \Gamma}{\arg \max} \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(v)} \frac{\omega_i \, \omega_{i_m^*(v)} \, \Delta_{i,m}^2(v)}{2(\omega_i + \omega_{i_m^*(v)})}$$

Then pull arms according to ω^* .

- Difficulty: Difficult to obtain a closed-form solution for ω^* .
- Possible Solution: Iterative numerical method to compute ω^* .
- Problem: May not be provably optimal if we run the method finitely many iterations.

Methodology: MO-BAI Policy

Recall that

$$c^*(v)^{-1} = \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(v)} \frac{\omega_i \, \omega_{i_m^*(v)} \, \Delta_{i,m}^2(v)}{2(\omega_i + \omega_{i_m^*(v)})}.$$

イロト イヨト イヨト イヨト

Methodology: MO-BAI Policy

Recall that

$$c^{*}(v)^{-1} = \sup_{\omega \in \Gamma} \min_{m \in [M]} \min_{i \in [K] \setminus i_{m}^{*}(v)} \underbrace{\frac{\omega_{i} \, \omega_{i_{m}^{*}(v)} \, \Delta_{i,m}^{2}(v)}{2(\omega_{i} + \omega_{i_{m}^{*}(v)})}}_{g_{v}^{(i,m)}(\omega)}$$

• Define first-order approximation for each arm and objective $g_v^{(i,m)}(\omega)$:

$$g_{v}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{v}^{(i,m)}(\omega), z - \omega \rangle.$$

Feb, 2025 8 / 17
Recall that

$$c^{*}(v)^{-1} = \sup_{\omega \in \Gamma} \min_{\substack{m \in [M] \ i \in [K] \setminus i_{m}^{*}(v)}} \underbrace{\frac{\omega_{i} \, \omega_{i_{m}^{*}(v)} \, \Delta_{i,m}^{2}(v)}{2(\omega_{i} + \omega_{i_{m}^{*}(v)})}}_{g_{v}^{(i,m)}(\omega)}.$$

• Define first-order approximation for each arm and objective $g_v^{(i,m)}(\omega)$:

$$g_{\mathsf{v}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathsf{v}}^{(i,m)}(\omega), \, \mathsf{z} - \omega \rangle.$$

• Define overall gradient-related function:

$$h_{\nu}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [\mathcal{K}] \setminus i_m^*(\nu)} \left\{ g_{\nu}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\nu}^{(i,m)}(\omega), \, \mathsf{z} - \omega \rangle \right\}.$$

• Gradient-related function

$$h_{\mathbf{v}}(\omega, \mathbf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(\mathbf{v})} \left\{ g_{\mathbf{v}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathbf{v}}^{(i,m)}(\omega), \, \mathbf{z} - \omega
ight\}.$$

Image: Image:

→ ∃ →

• Gradient-related function

$$h_{m{v}}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \ \min_{i \in [K] \setminus l^*_m(m{v})} \left\{ g^{(i,m)}_{m{v}}(\omega) + \langle
abla_\omega g^{(i,m)}_{m{v}}(\omega), \, \mathsf{z} - \omega
angle
ight\}.$$

• $h_{\nu}(\omega, z)$ is designed to approximate the overall objective $g_{\nu}(\omega)$.

< 3 > <

• Gradient-related function

$$h_{\mathcal{V}}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(\mathcal{V})} \left\{ g_{\mathcal{V}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathcal{V}}^{(i,m)}(\omega), \, \mathsf{z} - \omega
ight\}.$$

- $h_{\nu}(\omega, z)$ is designed to approximate the overall objective $g_{\nu}(\omega)$.
- But $h_{\nu}(\omega, z)$ is not a "linear approximation" of $g_{\nu}(\omega)$.

• Gradient-related function

$$h_{\mathcal{V}}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(\mathcal{V})} \left\{ g_{\mathcal{V}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathcal{V}}^{(i,m)}(\omega), \, \mathsf{z} - \omega \rangle \right\}.$$

- $h_{\nu}(\omega, z)$ is designed to approximate the overall objective $g_{\nu}(\omega)$.
- But $h_{\nu}(\omega, z)$ is not a "linear approximation" of $g_{\nu}(\omega)$.
- We take linear approximations of the inner terms

$$g_{v}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{v}^{(i,m)}(\omega), z - \omega \rangle.$$

• Gradient-related function

$$m_{\mathcal{V}}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [\mathcal{K}] \setminus i_m^*(\mathcal{V})} \left\{ g_{\mathcal{V}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathcal{V}}^{(i,m)}(\omega), \, \mathsf{z} - \omega \rangle \right\}.$$

- $h_{\nu}(\omega, z)$ is designed to approximate the overall objective $g_{\nu}(\omega)$.
- But $h_v(\omega, z)$ is not a "linear approximation" of $g_v(\omega)$.
- We take linear approximations of the inner terms

$$g_{v}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{v}^{(i,m)}(\omega), z - \omega \rangle.$$

• Guide the agent to pull arms in the "direction of the gradient".

• Gradient-related function

$$m_{\mathcal{V}}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(\mathcal{V})} \left\{ g_{\mathcal{V}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathcal{V}}^{(i,m)}(\omega), \, \mathsf{z} - \omega \rangle \right\}.$$

- $h_{\nu}(\omega, z)$ is designed to approximate the overall objective $g_{\nu}(\omega)$.
- But $h_{\nu}(\omega, z)$ is not a "linear approximation" of $g_{\nu}(\omega)$.
- We take linear approximations of the inner terms

$$g_{v}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{v}^{(i,m)}(\omega), z - \omega \rangle.$$

- Guide the agent to pull arms in the "direction of the gradient".
- Adapting algorithm in Wang et al. (2021) to our setting

• Gradient-related function

$$m_{\mathcal{V}}(\omega, \mathsf{z}) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus i_m^*(\mathcal{V})} \left\{ g_{\mathcal{V}}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{\mathcal{V}}^{(i,m)}(\omega), \, \mathsf{z} - \omega \rangle \right\}.$$

- $h_{\nu}(\omega, z)$ is designed to approximate the overall objective $g_{\nu}(\omega)$.
- But $h_{\nu}(\omega, z)$ is not a "linear approximation" of $g_{\nu}(\omega)$.
- We take linear approximations of the inner terms

$$g_{v}^{(i,m)}(\omega) + \langle \nabla_{\omega} g_{v}^{(i,m)}(\omega), z - \omega \rangle.$$

- Guide the agent to pull arms in the "direction of the gradient".
- Adapting algorithm in Wang et al. (2021) to our setting
- Maintaining computational tractability and considering the K^M tuples of possible best arms

Surrogate proportion at time step *t*:

$$\mathsf{s}_t \coloneqq rg\max_{\mathsf{s}\in\Gamma^{(\eta)}} h_{\widehat{\mathsf{v}}_{l_t}}(\widehat{\omega}_{\cdot,t-1},\mathsf{s}), \qquad (\mathsf{a \ Linear \ Program})$$

where

< ■ ▶ ■ • つへでFeb, 2025 10/17

Image: A matrix

→ ∃ →

Surrogate proportion at time step *t*:

$$\mathsf{s}_t := \underset{\mathsf{s} \in \Gamma^{(\eta)}}{\arg \max} h_{\widehat{v}_{l_t}}(\widehat{\omega}_{\cdot,t-1},\mathsf{s}) \qquad (\texttt{a Linear Program})$$

where

• Average allocation up to time t-1

$$\widehat{\omega}_{\cdot,t-1} := \sum_{i=1}^{t-1} \frac{\mathsf{s}_i}{t-1} \; .$$

- 4 回 ト 4 三 ト 4

Surrogate proportion at time step *t*:

$$\mathsf{s}_t \coloneqq \arg\max_{\mathsf{s}\in \Gamma^{(\eta)}} h_{\widehat{v}_{l_t}}(\widehat{\omega}_{\cdot,t-1},\mathsf{s}), \qquad (\mathsf{a \ Linear \ Program})$$

where

• Average allocation up to time t-1

$$\widehat{\omega}_{\cdot,t-1} := \sum_{i=1}^{t-1} \frac{\mathsf{s}_i}{t-1} \ .$$

• Empirical instances at time t is \hat{v}_t

Surrogate proportion at time step t:

$$\mathsf{s}_t \coloneqq \arg\max_{\mathsf{s}\in \Gamma^{(\eta)}} h_{\widehat{\mathcal{V}}_{l_t}}(\widehat{\omega}_{\cdot,t-1},\mathsf{s}), \qquad (\mathsf{a \ Linear \ Program})$$

where

• Average allocation up to time t-1

$$\widehat{\omega}_{\cdot,t-1} := \sum_{i=1}^{t-1} \frac{\mathsf{s}_i}{t-1}$$

- Empirical instances at time t is \hat{v}_t
- $l_t := \max_{k \in \mathbb{N}: 2^k \le t} 2^k$ is to prevent the instance \hat{v}_{l_t} from changing too frequently.

Sampling Rule:

$$A_t \in \underset{i \in [K]}{\operatorname{arg max}} [B_{\cdot,t-1} + s_t]_i,$$

where $B_{\cdot,t}$ is the buffer defined as

$$\mathsf{B}_{\cdot,0} = \underline{0}$$
 and $\mathsf{B}_{\cdot,t} = \mathsf{B}_{\cdot,t-1} - \mathsf{e}_{\mathsf{A}_t} + \mathsf{s}_t.$

Sampling Rule:

$$A_t \in \underset{i \in [K]}{\operatorname{arg max}} [B_{\cdot,t-1} + s_t]_i,$$

where $B_{\cdot,t}$ is the buffer defined as

$$\mathsf{B}_{\cdot,0} = \underline{0} \quad \text{and} \quad \mathsf{B}_{\cdot,t} = \mathsf{B}_{\cdot,t-1} - \mathsf{e}_{\mathcal{A}_t} + \mathsf{s}_t.$$

Example: K = 2.

✓ ∃ ► ∃ ∽ Q ⊂
Feb, 2025 11 / 17

(日)

Sampling Rule:

$$A_t \in \underset{i \in [K]}{\operatorname{arg max}} [B_{\cdot,t-1} + s_t]_i,$$

where $B_{\cdot,t}$ is the buffer defined as

$$\mathsf{B}_{\cdot,0} = \underline{0}$$
 and $\mathsf{B}_{\cdot,t} = \mathsf{B}_{\cdot,t-1} - \mathsf{e}_{\mathsf{A}_t} + \mathsf{s}_t.$

Example: K = 2. At time t = 1, suppose

$$\mathsf{s}_1 = \begin{bmatrix} 0.1 \\ 0.9 \end{bmatrix} \quad \Longrightarrow \quad \mathsf{pull} \text{ arm } 2 \quad \Longrightarrow \quad \mathsf{B}_{\cdot,1} = \begin{bmatrix} 0.1 \\ -0.1 \end{bmatrix}$$

(本語)を(本)

Sampling Rule:

$$A_t \in \underset{i \in [K]}{\operatorname{arg max}} [B_{\cdot,t-1} + s_t]_i,$$

where $B_{\cdot,t}$ is the buffer defined as

$$\mathsf{B}_{\cdot,0} = \underline{\mathsf{0}} \quad \text{and} \quad \mathsf{B}_{\cdot,t} = \mathsf{B}_{\cdot,t-1} - \mathsf{e}_{\mathcal{A}_t} + \mathsf{s}_t.$$

Example: K = 2. At time t = 1, suppose

$$s_1 = \begin{bmatrix} 0.1\\ 0.9 \end{bmatrix} \implies \text{pull arm } 2 \implies B_{\cdot,1} = \begin{bmatrix} 0.1\\ -0.1 \end{bmatrix}$$

At time t = 2, suppose

$$s_2 = \begin{bmatrix} 0.5\\ 0.5 \end{bmatrix} \quad \mathsf{B}_{\cdot,1} + s_2 = \begin{bmatrix} 0.6\\ 0.4 \end{bmatrix} \implies \text{pull arm } 1 \implies \mathsf{B}_{\cdot,2} = \begin{bmatrix} 0.4\\ -0.4 \end{bmatrix}$$

< ∃ > <

Lower Bound $c^*(v)^{-1}$

★ ∃ ►

★ ∃ ►

 \approx

Vincent Tan (NUS)

★ ∃ ►

.

.

Stopping Rule:

<ロ> <四> <四> <四> <四</td>

Stopping Rule:

• Chernoff's stopping rule (Kaufmann et al., 2016) inspired by Chen et al. (2023).

→ ∃ →

Stopping Rule:

• Chernoff's stopping rule (Kaufmann et al., 2016) inspired by Chen et al. (2023).

Let

$$Z(t) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus \hat{i}_m(t)} \underbrace{\frac{N_{i,t} N_{\hat{i}_m(t),t} \widehat{\Delta}_{i,m}^2(t)}{2(N_{i,t} + N_{\hat{i}_m(t),t})}}_{\text{approx of } g_v^{(i,m)}(\omega)}$$

Stopping Rule:

• Chernoff's stopping rule (Kaufmann et al., 2016) inspired by Chen et al. (2023).

Let

$$Z(t) \coloneqq \min_{m \in [M]} \min_{i \in [K] \setminus \widehat{i}_m(t)} \underbrace{\frac{N_{i,t} N_{\widehat{i}_m(t),t} \widehat{\Delta}_{i,m}^2(t)}{2(N_{i,t} + N_{\widehat{i}_m(t),t})}}_{\text{approx of } g_v^{(i,m)}(\omega)}$$

• The stopping time of MO-BAI is

$$\tau_{\delta} = \min\{t \ge K : Z(t) > \beta(t, \delta)\},\$$

where $\beta(t, \delta)$ is a carefully chosen threshold.

- ● ● ● ● ●

Proposition: δ -PACness

Fix $\delta \in (0, 1)$. Then, MO-BAI is δ -PAC, i.e., for all instances v,

$$\mathbb{P}_{v}^{ ext{MO-BAI}}\left(au_{\delta}<+\infty
ight)=1 \quad ext{and} \ \mathbb{P}_{v}^{ ext{MO-BAI}}ig(\widehat{l_{\delta}}=l^{*}(v)ig)\geq1-\delta.$$

< 3 > <

Proposition: δ -PACness

Fix $\delta \in (0, 1)$. Then, MO-BAI is δ -PAC, i.e., for all instances v,

$$\mathbb{P}_{\mathbf{v}}^{ ext{MO-BAI}}\left(au_{\delta}<+\infty
ight)=1 \quad ext{and} \ \mathbb{P}_{\mathbf{v}}^{ ext{MO-BAI}}ig(\widehat{l_{\delta}}=l^{*}(\mathbf{v})ig)\geq 1-\delta.$$

Theorem: Asymptotic Optimality

Under MO-BAI, for all instances v,

$$egin{aligned} &\limsup_{\delta o 0^+} rac{\mathbb{E}_{m{
u}}^{ ext{MO-BAI}}\left[au_{\delta}
ight]}{ ext{log}(rac{1}{\delta})}\leq c^*(
u) \quad ext{and} \ \mathbb{P}_{m{
u}}^{ ext{MO-BAI}}igg(\lim_{\delta o 0^+}rac{ au_{\delta}}{ ext{log}(rac{1}{\delta})}\leq c^*(
u)igg)=1. \end{aligned}$$

< 行

< ∃ ►

	$\delta = 0.1$	$\delta = 0.05$
MO-BAI	968.82 ± 58.21	$1,023.77 \pm 67.42$
BASELINE	$4,485.98 \pm 124.92$	$6,168.29 \pm 132.01$
BASELINE-NON-UNIF	$3,841.05 \pm 136.44$	$4,320.55 \pm 128.26$
MO-SE	$2,322.39 \pm 461.54$	$2,411.16 \pm 421.88$

Table 1: Average stopping times obtained by running 100 independent trials with $\delta \in \{0.1, 0.05\}$ for the SNW dataset. In BASELINE and BASELINE-NON-UNIF, we set ITER = 20.

• Multi-Objective Best Arm Identification problem with fixed-confidence

• Multi-Objective Best Arm Identification problem with fixed-confidence

$$M = 2, K = 3$$

$$\bigcirc \qquad 0.8 \qquad 0.1 \qquad 0.3$$

$$\bigcirc \qquad 0.1 \qquad 0.2 \qquad 0.9$$

$$i_1^* = 1, i_2^* = 3$$

• Multi-Objective Best Arm Identification problem with fixed-confidence

$$M = 2, K = 3$$

$$\bigcirc \qquad 0.8 \qquad 0.1 \qquad 0.3$$

$$\bigcirc \qquad 0.1 \qquad 0.2 \qquad 0.9$$

$$i_1^* = 1, i_2^* = 3$$

• Pulling arm A_t yields a vector of rewards

 $X_{A_t,m}(t) \sim \mathcal{N}(\mu_{A_t,m}, 1) \qquad \forall m \in [M].$

• Multi-Objective Best Arm Identification problem with fixed-confidence

• Pulling arm A_t yields a vector of rewards

$$X_{A_t,m}(t) \sim \mathcal{N}(\mu_{A_t,m},1) \qquad \forall m \in [M].$$

• Derived an asymptotically optimal and efficient algorithm

$$\frac{\boldsymbol{c}^{*}(\boldsymbol{v})}{\boldsymbol{c}^{*}(\boldsymbol{v})} \leq \liminf_{\delta \to 0^{+}} \frac{\mathbb{E}_{\boldsymbol{v}}^{\pi}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \leq \limsup_{\delta \to 0^{+}} \frac{\mathbb{E}_{\boldsymbol{v}}^{\text{MO-BAI}}[\tau_{\delta}]}{\log(\frac{1}{\delta})} \leq \frac{\boldsymbol{c}^{*}(\boldsymbol{v})}{\boldsymbol{c}^{*}(\boldsymbol{v})}.$$