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Abstract

Blind Audio Source Separation

Vincent Y.F. Tan (SID)

Signal Processing Laboratory,

Cambridge University Engineering Department,

Cambridge, CB2 1PZ, UK

In this project, the problem of blind separation of underdetermined mixtures of audio

sources is considered. The sources have to be sparsely represented on a given basis or

dictionary. They are assumed to follow a Student t distribution in the transformed do-

main. A Bayesian approach using Gibbs Sampling is employed to estimate the sources

in the transformed domain. The performance resulting from the use of various transform

methods is compared. A central theme of this project is sparsity and how this relates to

separation quality and noise reduction.

The orthonormal bases that will be considered include the Discrete Cosine Transform,

the Modified Discrete Cosine Transform, two Discrete Wavelet Transforms and a basis

obtained using the Wavelet Packet Best Basis Algorithm. The overcomplete dictionaries

that will be used include the Hybrid Transform and the Short-Time Discrete Cosine

Transform. These transforms were chosen because of their varying abilities to provide

sparse representations of different classes of audio signals.

The numerical results show that if the signal is sparse in the transformed domain, the

separation results are better. Sparsity is measured using the normalized L1 norm. Various

measures of separation quality, including the Source to Distortion Ratio will be used. In

general, the Modified Discrete Cosine Transform is a good representation for audio signals

with more tonals than transients. The Discrete Wavelets provide a sparser representation

for audio signals with more transients than tonals. Due to its adaptive nature, the Wavelet

Packet Best Basis Algorithm finds a basis that provides a sparse representation for all

the classes of signals that were tested. Finally, contrary to our initial expectations, the

overcomplete dictionaries failed to provide a significant improvement in separation quality.

We propose an explanation for this observation.
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Chapter 1

Introduction and Preview

Imagine you are in a party-room where 2 people are speaking simultaneously. There are

2 receivers, which are in different locations and can record the time signals generated by

the 2 people. Assuming that the each of the recorded time signals x1(t) and x2(t) is a

linear combination of the speeches s1(t) and s2(t) so that this can be expressed as

x1(t) = a1,1s1(t) + a1,2s2(t),

x2(t) = a2,1s1(t) + a2,2s2(t).

for each time index t. It would be useful in several applications if we can estimate the

signals s1(t) and s2(t) from the mixtures x1(t) and x2(t) for the time frame of interest.

This is the canonical, determined ‘cocktail party problem’ and the chief motivation behind

Blind Source Separation (BSS) and Independent Component Analysis (ICA).

This project focuses on various transform methods used in BSS [42, 85]. The goal of

BSS and ICA [58, 69] is to determine the original sources given mixtures of those sources.

Examples include speech separation in the ‘cocktail party problem’, processing of arrays

of sonar signals, blind separation of electroencephalographic (EEG) [74, 76], electromyo-

graphic (EMG) [37] data and separation of artifacts in magnetoencephalographic (MEG)

[58, 75] data in biomedicine. The adjective ‘blind’ emphasizes that the sources signals are

not observed and no information is available with regard to the mixture process.

There are two key principles in BSS and ICA. Firstly, the key to estimating the ICA

model is nongaussianity. To further elaborate, the independent components must be non-

gaussian for ICA to be possible because if the sources are Gaussian, the directions of the

columns of the mixing matrix A cannot be inferred. Nongaussianity can be quantified

via using measures such as kurtosis, mutual information and negentropy. Similarly, it

is required to further assume that the source signals are independent. This is a statis-

tically strong but physically plausible assumption. In fact, Hyvärinen [57, 58] argues

that independent components can be recovered by maximizing the nongaussianity of the

1



CHAPTER 1. INTRODUCTION AND PREVIEW 2

components. To maximize the nongaussianity for a demixing system Y = WX, where X

contains the observations, we typically optimize over the demixing matrix W such that

the kurtoses of the components in Y is maximized.

A vast number of fast and effective methods exist for solving the determined problem

(see for example [18] and [57]). However, in this project, we focus on the more difficult

underdetermined, noisy case. Fortunately, a linear instantaneous model is employed. A

summary of the algorithms used for convolutive mixtures can be found in [16] and [84].

In the underdetermined case, the number of sources n is greater than the number of

mixtures m and the problem is degenerate [118] as traditional matrix inversion demixing

cannot be applied. In this case, the separation of the underdetermined mixtures requires

prior [42, 86] information on the sources to allow for their reconstruction. Estimating

the mixing system is not sufficient for reconstructing the sources, since for m < n, the

mixing matrix is not invertible. As the system of linear equations is underdetermined,

a model of the sources is required. In particular, we employ the use of the Student t

model as the prior distribution of the sparse sources in the transformed domain. Given

the observations, one seeks to estimate the sources and the mixing matrix and possibly

the variance of the noise. The sources are sparsely represented by orthonormal bases and

overcomplete dictionaries [1, 31]. This assumption means that only a few coefficients of the

decomposition are significantly different from zero. We employ a Bayesian approach using

Gibbs Sampling to estimate the sources in the transformed domain before reconstructing

the sources. This Bayesian approach is not limited to underdetermined mixtures but

applies to the (over)determined case as well [42]. It is particularly useful when applied to

the general linear, instantaneous and noisy model, which we consider in this project.

To achieve the sparsest representation of the audio signal, wavelet packet best basis

[114] algorithms are used to minimize some form of entropy measure. Instead of restricting

ourselves to this, we will consider a series of orthonormal and overcomplete transforms. A

sparsity measure will be compared to the separation quality. Standardized measures [40]

for assessing audio sources separation algorithms will be used. We will show that sparsity

of the sources in the transformed domain is closely related to the separation quality.

1.1 Literature review

BSS was first suggested by the French researchers Hérault, Jutten, and Ans [55] in the mid

1980s. The theory was further developed in the 1990s where researchers found ways to

solve the (over)determined problem using, for instance, natural gradient methods [2, 3],

maximum likelihood estimation [95], higher order statistics [18, 58], information maxi-

mization [69, 109], mutual information [110] and non-stationarity [7]. Adaptive BSS and

ICA are discussed in detail in [21] and the concept of equivariance in [19]. Indeed, these
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well-established methods have performed well for the (over)determined BSS problem, for

example in image coding [6]. Several books [21, 58] on ICA have been written as well.

The underdetermined problem has been of interest to researchers once solutions to the

(over)determined problem had been established. In [119], the authors also exploited the

use of sparse sources. A two stage approach was proposed, that is, the mixing matrix was

estimated using a clustering algorithm. Following that, the source matrix is estimated.

A related letter [73] examines the effect of sparsity using the algorithm in [119]. The

authors focused mainly factorization of the data matrix by estimating the overcomplete

basis matrix using the K-means method to find the best basis. Furthermore, in [64] and

[118], the authors used a relatively new technique based on the Degenerate Unmixing

and Estimation Technique (DUET). DUET can be applied to a class of signals known as

W-disjoint orthogonal signals [101]. In essence, W-disjoint orthogonal signals have dis-

joint support for their time-frequency representation. Similarly, the authors in [41] and

[43] contributed to BSS by using time-frequency representations. Assigning a prior to the

hitherto unknown sources is also a popular way of performing underdetermined blind sep-

aration. Several authors have modelled the sources using Laplacian distributions [72, 86]

or Gaussian Mixture Models (GMM) [31] and estimating the sources and mixing matrix

using Expectation-Maximization (EM) [11]. As mentioned in [42], although using EM is

computationally efficient, the algorithm is susceptible to convergence at local maxima.

Using the successful results in [116], where audio restoration was modelled using Student

t distributions, we will model the sources in the transformed domain using Student t dis-

tributions. Furthermore, inference will be performed using a Markov Chain Monte Carlo

(MCMC) method based on the the Gibbs Sampler [47]. The Gibbs Sampler is, in fact, a

stochastic analog of EM.

As mentioned, the concept of sparsity will be exploited in this project. Finding a

sparse representation of a signal or an image is desired in many applications, for instance

in JPEG image compression [10, 48, 59]. Researchers have developed many means based

on optimization principles to express a signal in the sparsest possible representation [20,

32, 36, 50, 77]. Under mild conditions, minimizing the L1 norm is equivalent to minimizing

the L0 norm [33], the number of nonzero entries in the sequence. Besides, minimizing

the L1 norm is a relatively simple task, which in general, reduces to a a linear program

[20, 73]. Thus, we will use the L1 norm [32, 104] to measure sparsity.

Numerous transform methods for representing a signal exist. These range from the tra-

ditional Discrete Fourier Transform (DFT) to more exotic representations using wavelets.

The Fast Fourier Transform (FFT) attributed to Cooley and Tukey [26] revolutionized

signal processing and sparked a range of research topics in frequency analysis. Time-

frequency analysis and multi-resolution signal processing [27, 97, 111] soon followed. Most

of these transforms have the effect of energy compaction such that in the transformed do-
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main, only a small number of coefficients are significantly different from zero i.e. sparse.

A subset of these methods will be considered in this project. Transforms have tradi-

tionally been used as a pre-processing step in BSS. This has the effect of compacting the

energy of the sources. For instance, in [31], the authors present results with speech signals

decomposed on a Modified Discrete Cosine Transform (MDCT) basis [28]. The authors

of [66] use a multi-scale framework for performing blind separation instead. They used

various versions of the Discrete Wavelet Transform (DWT) [27, 79, 112] as well as Wavelet

Packets (WP) [114] to decompose the sources. We will consider these transforms among

others in this project. Lastly, overcomplete representations such as the hybrid transforms

mentioned in [29] and [88] will be considered.

1.2 Applications

The classical application of BSS and ICA is trying to understand how the humans select

the voice of a particular speaker from an ensemble of different voices corrupted by music

and noise in the background. As described, this is the quintessential ‘cocktail party

problem’ [58]. Other applications, besides those already mentioned in the Introduction,

have also sprung to interest over the past decade or so. These include:

1.2.1 Biomedicine

Atrial fibrillation is one of the most prevalent abnormal heart rhythms. As the signal

strength of the atrial component of the body surface electrocardiogram (ECG) is small,

it has proven to be difficult to detect using non-invasive techniques. It would be thus,

very helpful to clinicians if there are established algorithms to separate the atrial compo-

nent from the stronger ventricular component in an ECG. This is discussed in the paper

by Raine [98]. In EEG analysis, different artifacts such as eye-blinking deteriorate its

quality. Identification of the various sources from the independent components is thus

integral for clinal analysis. An innovative method [113] combining the use of standard

BSS techniques and Support Vector Machines (SVM) [34] has been proposed to solve this

problem. Advanced implementations of ICA as applied to neurophysiologic signals in the

form of electromagnetic brain signals data are demonstrated in [60].

1.2.2 Image Denoising and Compression

In close relation to ICA is a field known as Sparse Code Shrinkage [56], which can be used

for denoising of natural images. Briefly, the model used is

X = S + N. (1.1)
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In Sparse Code Shrinkage, the density of the observations S are modelled by ICA. If the

noise N is assumed to be Gaussian, then finding the Maximum Likelihood (ML) estimate

for S given the mixtures X basically encapsulates the denoising process. The authors

in [38, 39] exploited ICA to obtain transform-based compression schemes for images and

similarly in [68], ICA was used to compute features extracted from natural images.

1.2.3 Financial Time Series

In econometrics, finding the common underlying factors [67] in perturbations of financial

data, such as currency exchange rates or daily returns of stock is integral. This appears to

be an appealing way to apply ICA on financial data. In a recent study of stock portfolio by

Back and Weigend [5], ICA was found to be a complementary tool to Principal Component

Analysis (PCA) [34]. Furthermore, in [117], ICA was used to forecast the U.S. real output

and inflation variables. ICA is a powerful method for studying the underlying structure

of the financial data and driving mechanisms in financial time series.

1.2.4 Telecommunications

In Code-Division Multiple Access (CDMA) and mobile communications, blind separation

techniques [103] are used to separate the desired signals from other users’ signals. Similar

to the approach that we will be adopting later, the sources are assigned a prior distribution

[102] to enhance the performance of the separation process.

1.3 Structure of report

This report will be structured as follows. We discuss the general method employed in

Chapter 2. Here, the model and assumptions will be presented and a sparsity measure

will be formally introduced. Various transform methods will also be discussed before

the performance metrics to evaluate different BSS algorithms are defined. An extension

to overcomplete dictionaries is provided in Chapter 3. We then turn our discussion to

numerical results in Chapter 4. This chapter deals primarily with the effect of various

orthonormal bases and consequently, sparsity on separation quality. It will be shown

empirically, that there is a close correlation between sparsity and sound quality regardless

of the nature of the sources. In Chapter 5, the effects of using the Short-Time Discrete

Cosine Transform (STDCT) and Hybrid Transform (HT) are quantified. The importance

of sparsity will be reinforced. We will see that the performance improves only marginally

and we propose an explanation for this. Conclusions and perspectives are presented in

Chapter 6.



Chapter 2

Blind Source Separation and

Orthonormal Bases

In this chapter, the Blind Source Separation (BSS) model will be presented. A set of no-

tation will be established for instantaneous linear mixtures [42]. Following that, the three

main assumptions in BSS [18, 58] will be discussed. We will then proceed to summarize

the method used for separating the sources in an underdetermined mixture. This involves

using an orthonormal transform to achieve sparsity of the sources in the transformed

domain. A Bayesian approach based on Gibbs Sampling [45, 46, 54] will be adopted

to estimate the sources and the mixing matrix. The reconstruction step completes the

algorithm. A selection of orthonormal bases will be presented. The bases were selected

based on their different abilities to compress of various forms of audio data. For instance,

it is well known that the Modified Discrete Cosine Transform (MDCT) [28, 79] is well

suited for audio compression. Yet, there has been significant research devoted to using

Wavelet Coefficients [30, 88] to model the transients in audio signals. The Wavelet Packet

Best Basis Algorithm [20, 66] has also been used widely to achieve sparsity in BSS and

audio and image [79] coding. Finally, we will discuss four different performance measures

[40, 51] to evaluate the performance of source separation on the audio signals. Some

other popular methods employed in audio source separation are given by Mitianoudis and

Davies [85] and in the PhD thesis by Mitianoudis [83].

2.1 Model and Assumptions

The notation that we adopt is in line with that presented in [42] and [43]. We will present

a discussion on the assumptions made on the sources and the noise. We will also briefly

discuss about BSS indeterminacies here.

6
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2.1.1 BSS Model

We consider the following linear instantaneous model that is commonly used in BSS.

xt = Ast + nt, 0 ≤ t ≤ N − 1 (2.1)

where xt = (x1,t, . . . , xm,t)
T is the vector of size m containing the observations, st =

(s1,t, . . . , sn,t)
T is the vector of size n containing the non-stationary stochastic sources. A

is the m× n unknown full rank mixing matrix (with possibly m < n). Variables without

time index t denote whole sequences or samples, for example, X = (x0, . . . ,xN−1). As a

consequence, (2.1) can be rewritten more succinctly as

X = AS + N. (2.2)

The goal is to estimate the sources S and the mixing matrix A up to the standard BSS

indeterminacies [18] of gain and order. Hence, the task is to compute Ŝ and Â such that

Â = APD, (2.3)

Ŝ = PTD−1S, (2.4)

where D is a diagonal matrix and P a permutation matrix.

2.1.2 Transform

In the following discussion, Ψ ∈ RN×N and Φ ∈ RN×N are orthonormal matrices. Ψ

is the analysis operator such that the decomposition of the sources S̃ = SΨ results in

a sparse representation. Note that the overhead tilde ‘∼’ is used to denote a vector in

the transformed domain. Since it is sparse, the matrix S̃ has few coefficients that are

significantly different from zero. Φ is the synthesis operator such that Φ = Ψ−1 = ΨT .

Equation (2.2) can then be rewritten in the transformed domain as

XΨ = ASΨ + NΨ, (2.5)

X̃ = AS̃ + Ñ. (2.6)

As Ψ is an orthonormal matrix, equations (2.1) and (2.6) are equivalent. Estimating the

sources in the transformed domain is equivalent to estimating the sources in the time

domain, except for an orthonormal transform. We will primarily work in the transformed

domain because sparsity is essential for achieving good separation quality as we will see

in Chapter 4.
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2.1.3 Assumptions for BSS

We emphasize that for BSS to be performed, the sources have to be sparsely represented

on a given basis or dictionary. Sparsity is well modelled by the Student t distribution.

Furthermore, the sources have to be statistically independent and we assume that the

noise is i.i.d. Gaussian.

Student t distribution

Although several authors have modelled the sources using Laplacian distributions [31, 72,

86], the successful results of Student t modelling for audio restoration [116] has inspired

us to model the sources in the transformed domain using the Student t distribution. This

leads to sparse modelling when the “degrees of freedom” is low. Hence, we assume that

each source sequence s̃i in the transformed domain is i.i.d. with Student t distribution

t(αi, λi)

p(s̃i,k|αi, λi) =
Γ(αi+1

2
)

λi
√
αiπΓ(αi

2
)

(
1 +

1

αi

(
s̃i,k
λi

)2
)−αi+1

2

, (2.7)

where αi is the “degrees of freedom” and λi a scale parameter. It is known [4] that the

Student t distribution can be expressed as a Scaled Mixture of Gaussians (SMoG).

p(s̃i,k|αi, λi) =

∫ ∞
0

N (s̃i,k|0, vi,k)IG
(
vi,k

∣∣∣αi
2
,

2

αiλ2
i

)
dvi,k. (2.8)

This property will be very useful when deriving the posterior distributions of the param-

eters when we implement the Gibbs Sampler. In comparison to the Laplacian prior,

the Student t prior has the advantage of providing a supplementary hyperparameter

αi which controls the sharpness of the distribution. We denote vt = (v1,t, . . . , vn,t)
T ,

V = (v0, . . . ,vN−1), α = (α1, . . . , αn) and λ = (λ1, . . . , λn). The property in equation

(2.8) implies that a random variable y ∼ t(α, λ) can be sampled by

v ∼ IG
(
v
∣∣∣α
2
,

2

αλ2

)
, (2.9)

y ∼ N (y|0, v), (2.10)

where IG(x|γ, β) and N (x|µ, σ2) are the Inverted-Gamma1 and Normal distributions

respectively. The analytical forms of the distributions can be found in Appendix A.1. A

plot of several Student t distributions with different values of α is shown in Figure 2.1.

The densities were normalized so that they have the same value at the mode. It was noted

that small values of α tend to give peaky distributions. As α tends to large numbers, the

1The Inverted-Gamma distribution is the distribution of 1/X when X is Gamma distributed.
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Figure 2.1: Comparison of Student t distributions with different values of α

density function tends to a standard normal N (0, 1) = (2π)−1/2 exp
(
− x2

2σ2

)
.

Independence of Sources

We will assume that the sources in the transformed domain are statistically and mutually

independent, such that

p(S̃) =
n∏
i=1

p(̃si). (2.11)

Since the next step is to decompose the sources on a given basis, it would be more relevant

to consider that the coefficients of the sources on the basis are mutually independent [119].

Independent, Identically Distributed Gaussian Noise

Finally, in (2.1), nt is an i.i.d noise vector independent of sources with covariance σ2Im

and σ unknown. Since the transform is orthonormal, ñt is similarly an i.i.d noise vector

independent of sources with covariance σ2Im.

2.2 Method

The method employed is adapted from [42]. It involves the use of a transform as mentioned

in section 2.1.2 to ensure that the sources are sparse before Gibbs Sampling is applied.

Reconstruction then follows before the algorithms are evaluated using standard metrics

[40, 51]. A block diagram of the method that will be described in detail is shown in

Figure 2.2.
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2.2.1 Gibbs Sampling

The tremendous improvements in computational power have led to a dramatic increase

in interest in Markov Chain Monte Carlo (MCMC) methods. MCMC in the form of the

Gibbs Sampler and the Metropolis-Hastings algorithm [47] allows any distribution to be

simulated on a finite-dimensional state space specified by any conditional density. In

particular, the Gibbs Sampler was first studied by the statistical physics community [82]

and then later in the statistics community [46, 54]. The basis behind Gibbs Sampling is

the Hammersley-Clifford [53] theorem which states that given the data d, the conditional

densities pi(ai|ai 6=j,d) contain sufficient information to produce samples from the joint

density p(a1, a2, . . . , ak|d). Gibbs Sampling has been used extensively and successfully in

image [46] and audio restoration [47] and interpolation of missing samples [91]. The Gibbs

Sampler is presented here to estimate {S̃,A, σ} together with V and the hyperparame-

ters {α,λ}. As is common with most of the literature on the Gibbs Sampler, we define

θ = {S̃,A, σ,V,α,λ}, and θ−y denotes the set of parameters except y. Also, a Jeffrey’s

uninformative prior [62, 63] is assigned to the standard deviation of the noise such that

p(σ) = κ/σ and κ is a constant. The Gibbs Sampling algorithm is as follows:

Initialize θ(0) = {S̃(0),A(0), σ(0),V(0),α(0),λ(0)}.
for k = 1 : K do

S̃(k) ∼ p(S̃|A(k−1), σ(k−1),V(k−1), X̃) (2.12)

σ(k) ∼ p(σ|S̃(k), X̃) (2.13)

A(k) ∼ p(A|S̃(k), σ(k), X̃) (2.14)

V(k) ∼ p(V|S̃(k),α(k−1),λ(k−1)) (2.15)

α(k) ∼ p(α|V(k),λ(k−1)) (2.16)

λ(k) ∼ p(λ|V(k),α(k)) (2.17)

end for

where the superscript (k) indicates the value of a random vector/matrix at the kth it-

eration and the ∼ denotes sampling from the conditional density on the right. The

conditional densities from equations (2.12) to (2.17) can be found in Appendix A.2. K

is the total number of iterations of the Gibbs Sampler and Kb is the burn-in length, the

number of iterations before the Markov Chain reaches its stationary distribution. For the

sake of brevity, we refer the interested reader to [42] for the derivation of the analytical

forms of the various conditional densities p(θy|θ−y, X̃).

After the burn-in period, the Markov Chain reaches equilibrium and one will observe
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Figure 2.2: Block Diagram of the algorithm

that the Gibbs Sampler draws random samples from the underlying posterior distributions

p(θ|X̃). Consequently, the Minimum Mean Squared Error (MMSE) Estimate [11, 34, 65]

can be written as

θ̂MMSE =
1

K −Kb

(
K∑

k=Kb+1

θ(k)

)
. (2.18)

2.2.2 Reconstruction

After the burn-in period, the Gibbs Sampler provides estimates of the mixing matrix A,

the sources S̃ and the noise standard deviation σ. Equation (2.6) can then be rewritten

as

X̃ = Âˆ̃S + ˆ̃N, (2.19)

where the estimates are denoted Â, ˆ̃S and ˆ̃N. We perform the inverse transform on (2.19)

by decomposing ˆ̃S on the basis Φ from which we obtain Ŝ.

Ŝ = ˆ̃SΨ−1 = ˆ̃SΨT = ˆ̃SΦ. (2.20)

This concludes our discussion of the algorithm. A block diagram of the process is shown

in Figure 2.2.

2.2.3 Sparsity

As shown in Figure 2.2, the representation of the sources is assumed to be sparse before

the Gibbs Sampler is applied. Also, finding a sparse representation of a signal or an image

is desired in many applications. It can be used in compression [48, 59, 79], regularization

in inverse problems and feature extraction. In fact, the success of the JPEG2000 can

be attributed to the sparsity of the wavelet coefficients of the image [10]. Furthermore,

one of the most natural and effective priors in Bayesian theory for signal estimation is
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the existence of a sparse representation over a suitable basis or dictionary. Combining

sparsity and overcompleteness, which will be discussed in Chapter 3, has been successfully

used as a technique in dynamic range compression in images [44].

Sparsity Index

A useful metric for sparsity is the sparsity index [32, 104] of the signal s̃i is defined as

ξ
4
=
‖s̃i‖1
‖s̃i‖2

. (2.21)

The smaller ξ is, the sparser the signal. The division by ‖s̃i‖2 is simply a normalization.

‖s̃i‖2 is equal for different orthonormal bases, so we are effectively comparing the L1

norms of s̃i. Other metrics based on the Lp norm exist. These would be expressed as

ξp
4
= ‖s̃i‖p/‖s̃i‖2 for 0 < p < 2. See for example [78] or [104] for more details. Besides, one

can try to fit a Student t pdf to the histogram of the sources, estimate the corresponding

value of α, which governs the concentration of coefficients near zero. This value of α

would also be an alternative measure of sparsity. However, we will persist with the use

of ξ as defined in equation (2.21) as our measure of sparsity. This sparsity measure was

also used in [43].

Illustration

To illustrate the use ξ, in Figure 2.3a, a plot of a length N = 65536 musical signal is shown.

It is known that the MDCT [28] produces a sparse representation of audio signals, and in

particular musical signals, and this is shown in Figure 2.3b. The Orthogonal, Periodized2,

Discrete Wavelet Transform (using Symmlets of order 8) is also taken and shown in

Figure 2.3c. Keeping in mind that the dyadic length of the signal is J = log2(N) = 16

and the length of the filter M = 16, the coarsest scale is chosen to be L = 5. Typically

[17], L� J and M < 2L+1.

The normalized histogram of the original signal is plotted in Figure 2.3d and the corre-

sponding sparsity index ξ = 195.7. The normalized histogram of the MDCT transformed

signal is shown in Figure 2.3e. The histograms are normalized so their areas integrate

to unity. One immediately observes that most of the coefficients are near zero implying

that the signal is sparse in the MDCT domain. Reassuringly, the corresponding sparsity

index ξ = 50.1. Finally, the value of the sparsity index for signal in the DWT domain is

ξ = 104.7, indicating that the DWT produces coefficients that are not as sparse as the

MDCT. The normalized histogram for the coefficients of the signal in the DWT domain

is shown in Figure 2.3f.

2Periodized to ensure that the length of the transform is equal to the length of the signal.
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Figure 2.3: Statistical properties of audio signals

2.3 Orthonormal Bases

In the following discussion the row vector si, for 1 ≤ i ≤ n, is the ith length N source

sequence and its orthonormal transform is s̃i. si,t is the tth element of the source vector

si while s̃i,k is the kth element of transformed vector s̃i. Different bases Φ = ΨT will be

introduced and used to transform the vector si to attain sparsity before the Gibbs Sampler

is applied. Later, we will show that the degree of sparsity is closely related to separation

quality. Transforms are discussed in greater detail in [49] where quantization effects are

also considered. An orthonormal basis [107], which is a collection {φp : 1 ≤ p ≤ N} has

to satisfy the following two conditions.

• Orthogonality: If 1 ≤ p, q ≤ N and p 6= q, then 〈φp,φq〉 = φTpφq = 0;

• Normalization: For each p, ‖φp‖ = 1.

2.3.1 Discrete Cosine Transform (DCT)

The DCT [100] is related to the ubiquitous Discrete Fourier Transform (DFT). Martucci

[81] proved that there are eight ways in total to extend a finite length signal s to make it

symmetric. This leads to different versions of the Discrete Cosine Transform (DCT) and

Discrete Sine Transform (DST). We consider here the Discrete Cosine IV basis [59, 79, 92].

A signal si of N samples is extended to a signal s
(IV )
i of period 4N with respect to −1/2
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and antisymmetric with respect to N−1/2 and −N+1/2. It can be shown [79] that since

s
(IV )
i,t = si,t for 0 ≤ t < N , si can be written as a linear sum of odd frequency cosines.

Hence, the family {√
2

N
cos

[
π

N

(
k +

1

2

)(
t+

1

2

)]}
0≤k<N

(2.22)

is an orthonormal basis of CN . This is the discrete cosine transform IV (DCT-IV). The

DCT-IV of a signal of size N is related to Discrete Fourier Transform (DFT) of a complex

signal of size N/2 [35]. Hence, we need O(N log2N) operations to calculate the DCT-IV

using a method similar to the Fast Fourier Transform (FFT) [26].

The DCT has excellent energy compaction properties [92] and hence the major ap-

plication of the DCT is in signal and image compression [61, 99], where it is a key part

of many standardized algorithms, including JPEG3 [48, 59]. This is because it is a good

substitute for the optimal Karhunen-Loève transform (KLT) [34, 65] as the DCT func-

tions approximate the eigenvectors of the autocorrelation matrix Rxx of a first order

Gauss-Markov process [24].

2.3.2 Modified Discrete Cosine Transform (MDCT)

Malvar discovered that one can create orthogonal bases with smooth windows modulated

by a cosine IV basis [80]. The support of a window gp is [ap − ηp, ap+1 + ηp+1], with

lp = ap+1− ap as seen in Figure 2.4. The design of the windows gp implies symmetry and

quadrature properties on overlapping intervals such that

gp(t) = gp+1(2ap+1 − t), (2.23)

g2
p(t) + g2

p+1(t) = 1, (2.24)

for all t ∈ [ap+1 − ηp+1, ap+1 + ηp+1]. This leads directly to the local cosine transform

[79, 112], also called the modified discrete cosine transform (MDCT) [28] or lapped or-

thogonal transform (LOT) [80]. This overlapping, in addition to the energy-compaction

properties of the DCT, makes the MDCT especially suited for several audio compression

applications [96], since it helps to avoid artifacts resulting from the discontinuities at the

block boundaries. Lapped orthogonal bases are discretized by replacing the orthogonal

basis in L2(R) with a discrete basis on CN and uniformly sampling the windows gp(t)

to obtain the smooth and discretized windows gp,t. Also let Nf be the total number of

frames or equivalently, windows. We restrict p to fall in the range 1 ≤ p ≤ Nf such

that
∑Nf

p=1 lp = N . Discrete local cosine bases are then derived with cosine-IV bases as

3However, JPEG2000 [10] uses wavelets instead of the DCT.
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Figure 2.4: Smooth windows used in the MDCT

discussed in the previous section. Hence, the family of local cosine functions{
gp,k,t = gp,t

√
2

lp
cos

[
π

(
k +

1

2

)
t− ap
lp

]}
0≤k<lp,1≤p≤Nf

(2.25)

is an orthonormal basis for CN . Using a folding procedure, Malvar [80] devised a fast

algorithm to compute the MDCT in O
(∑Nf

p=1 lp log2 lp

)
operations where lp and Nf are

defined above.

2.3.3 Wavelet Transforms: Vaidyanathan (WT-Vai)

The topic of wavelets is certainly the most trendy in signal processing and applied math-

ematics today. The first wavelet and the only example for a long time was found by Haar

[52]. Over time, more wavelets as well as faster algorithms to compute them were devised.

For an introduction to wavelets, see [27, 108, 112]. Wavelets represent a signal at differ-

ent scales (See Figure 2.5) and the DWT is the collection of subband signals. Wavelets

are used in various fields from image compression [48] to mechanical vibrations [90]. In

this project, 2 different discrete wavelets are used. They were implemented using the Fast

Wavelet Transform (FWT) [79, 108] by considering the filter bank approach in Figure 2.5.

H0(z) =
∑∞

t=−∞ h0,tz
−t is the z-transform [93] of the impulse response h0 and h0,t is the

tth element of h0. h0 and h1 are typically low-pass and high-pass filters respectively. The

reconstruction filters can be derived from the synthesis filters and it is easy to show [59]

that they have to satisfy the perfect reconstruction (PR) conditions.

H0(−z)G0(z) +H1(−z)G1(z) = 0, (2.26)

H0(z)G0(z) +H1(z)G1(z) = 2, (2.27)
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Figure 2.5: Filter bank/Multiscale representation of a signal

where G0(z) and G1(z) are the z-transforms of the reconstruction filters g0 and g1 respec-

tively. The first wavelet we will use was designed by Vaidyanathan and Hoang [111]. This

wavelet is used primarily because the constraint is important in optimizing the transform

code of audio and speech signals [79, 111]. The phase is highly non-linear, which results

in audible and visible coding artifacts [48, 112] in image processing. As a result, linear

phase filters are always preferred. The Vaidyanathan filter is of length MV ai = 24 and

this wavelet will henceforth be abbreviated by WT-Vai.

2.3.4 Wavelet Transforms: Symmlets (WT-Sym)

Unfortunately, the ubiquitous Daubechies wavelets [27] are very asymmetric and hence

they have non-linear phase and significant sidelobes [79]. To obtain a symmetric wavelet,

the filter h0 must be symmetric with respect to its center of support. Symmlet filters

[79] are optimized such that they are as symmetric as possible whilst still satisfying the

perfect reconstruction equations (2.26) and (2.27) and attaining an almost linear phase.

The length of the Symmlet of order p = 8 is MSym = 2p = 16 and this wavelet will

henceforth be abbreviated by WT-Sym.

A fast orthogonal wavelet transform was devised by Mallat [79, 108] and the computa-

tion of the DWT for both WT-Vai and WT-Sym requires at most 2MN operations where

M is the length of the filter. This method is in fact a classical scheme known in signal

processing as a two-channel subband coder or filter banks (See Figure 2.5).

2.3.5 Wavelet Packet Best Basis (WPBB)

In wavelet analysis, a signal is split into an approximation (low-pass component) and a

detail (high-pass component). The approximation is then itself split into a second-level

approximation and detail, and the process is repeated. For an n-level decomposition,

there are n+ 1 possible ways to decompose or encode the signal. Wavelet Packet analysis

involves splitting not only the approximation but also the detail. This provides more

than 22n−1
ways to represent a signal. Certainly, there exists ways that are, in some sense,
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better than others.

It turns out that it is possible to seek the best one by some criterion. If the algorithm is

sufficiently cheap, then it is possible to assign to a particular signal its own adapted basis,

or basis of adapted waveforms. Coifman and Wickerhauser [25, 114] have proposed a fast

method based on dynamic programming to adaptively choose a single orthonormal basis

that is the ‘best basis’. If we define E as an entropy operator such that E (̃si) =
∑

k e(s̃i,k),

where e(y) is a scalar function of a scalar argument, the optimization program can be

stated as

Φ∗ = arg min
Φ

E(siΦ
−1) subject to ΦΦT = IN . (2.28)

In this project, e(y) was chosen to be |y| because the sparsity index is defined in terms of

the L1 norm. Another choice of e(y) is the entropy e(y) = −y loge y introduced by Shan-

non [106]. The algorithm in most cases delivers near-optimal sparsity representations

[20]. In particular, when the signal has a sparse representation in an orthonormal basis

taken from the library, the algorithm will work well. Using a brute force approach to find

the best basis requires a total of N2N/2 operations, which is computationally implausible.

The fast dynamic programming algorithm that Coifman and Wickerhauser [25, 114] finds

the best wavelet packet basis with O(N log2N) operations, by taking advantage of the

tree structure of the wavelet decomposition. Decomposing the observations on this basis

requires another 2MN operations where M is the length of the filter. An similar formu-

lation is presented in [21], where Cichocki and Amari discuss means to perform BSS and

ICA adaptively.

Note that since we have no knowledge of the sources a priori, the optimization in

(2.28) is done on x1, the first of the mixtures. This produces an optimal orthonormal

basis Φ1 = ΨT
1 based on x1 that is, in general, not guaranteed to be the optimal one

for any of the n original sources. Though sub-optimal, we hope that it will produce a

sparse representation of the original sources. One can alternatively choose to perform the

optimization in (2.28) for the sequence x2 and obtain another orthonormal basis Φ2 = ΨT
2 .

2.3.6 No Transform (NT)

For the sake of comparison, the Gibbs Sampler was also applied to the sources directly,

without transform. Hence, Ψ = Φ = IN and

s̃i = siIN = si, (2.29)

where IN is the N × N identity matrix. This is known in the literature [114] as the

standard orthonormal basis.
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Transform DCT MDCT WT-Vai WT-Sym WPBB

Complexity O(·) N log2N
∑Nf

p=1 lp log2 lp NMV ai NMSym N log2N

Table 2.1: Comparison of computational complexities for the various transforms

2.3.7 Summary of Orthonormal Bases

A summary of the computational complexity of each transform is given in Table 2.1. Note

that MV ai = 24 is the length of the Vaidyanathan filter and the MSym = 16 is the length

of the Symmlet of order 8. This completes our discussion on the various transforms that

will be used. During the course of the project, some other transforms were also considered

but not implemented. These included

• Gabor Frames [115, 116] or Short-Time Fourier Transform (STFT) [92]

This was not implemented because it generates complex sequences from real se-

quences. However, in Chapter 3, we will be looking at the Short-Time Discrete

Cosine Transform (STDCT), a close relative of the Gabor transform. The STDCT

has the advantage over the STFT because it generates overcomplete real sequences.

• Discrete Sine Transform (DST) [59, 92]

Except for a phase shift4, this transform is very similar to the DCT as described

section 2.3.1 and hence it was not implemented.

2.4 Performance Measures

Any algorithm has to be evaluated. In this section, we focus on the results of [40] and

[51] where the authors addressed issues related to the evaluation of performance of BSS

algorithms. The authors factored into their consideration that BSS algorithms will only

be able to recover the sources up to a permutation and a gain as explained in section 2.1.1.

The ith length N signal will be denoted si, for 1 ≤ i ≤ n, and its estimate is ŝi.

Let us assume that the source signals si are mutually orthogonal and the noise signals

are always assumed to be mutually orthogonal to each other and to the sources. Then,

the estimated source ŝi has an orthogonal decomposition

ŝi =

〈
ŝi,

si
‖si‖

〉
si
‖si‖

+ einterf + enoise + eartif , (2.30)

where 〈ŝi, si/‖si‖〉 si/‖si‖ is the contribution to the true source, einterf is the error term

due to interference of the other sources and enoise is the error term due to additive noise and

eartif
4
= ŝi−〈ŝi, si/‖si‖〉 si/‖si‖−einterf−enoise is the error term attributed to the numerical

4However, in image coding, this effect of this phase shift results in visible differences when compared
to the DCT [59].
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artifacts of the separation algorithm. In general, the sources may be correlated but

still linearly independent. We define Ps(ŝi)
4
=
∑n

l=1 〈ŝi, sl/‖sl‖〉 sl/‖sl‖ as the orthogonal

projector onto the sources’ span and Ps,n(ŝi)
4
= Ps(ŝi) +

∑m
l=1 〈ŝi,nl/‖nl‖〉nl/‖nl‖ as

the orthogonal projector onto the span of both the sources and the noise signals. The

decomposition (2.30) still holds with

einterf
4
= Ps(ŝi)−

〈
ŝi,

si
‖si‖

〉
si
‖si‖

, (2.31)

enoise
4
= Ps,n(ŝi)− Ps(ŝi), (2.32)

eartif
4
= ŝi − Ps,n(ŝi). (2.33)

Equipped with these definitions, we are now ready to define the Source to Distortion Ratio

(SDR), the Source to Interference Ratio (SIR), the Source to Artifacts Ratio (SAR) and

the Source to Noise Ratio (SNR).

2.4.1 Source to Distortion Ratio (SDR)

The total relative distortion is defined as

Dtotal
4
=
‖ŝi‖2 −

∣∣∣〈ŝi,
si
‖si‖

〉∣∣∣2∣∣∣〈ŝi,
si
‖si‖

〉∣∣∣2 . (2.34)

where ‖ · ‖ is the L2 norm. Note that when the estimate source is orthogonal to the

original source i.e. |〈ŝi, si〉| → 0 then Dtotal → +∞. Thus, the SDR (dB) is defined as

SDR
4
= 10 log10D

−1
total. (2.35)

The definition of Dtotal corresponds to the ratio of the energy of the two terms in the

decomposition ŝi = 〈ŝi, si/‖si‖〉 si/‖si‖+ etotal where etotal = einterf + enoise + eartif is the

error term, which is orthogonal (uncorrelated) to the contribution of the true source. In

fact, by the Pythagorean theorem, ‖etotal‖2 = ‖ŝi‖2 − |〈ŝi, si/‖si‖〉|2. The SDR provides

an overall separation performance criterion. It is a global measure of distortion.

2.4.2 Source to Interference Ratio (SIR)

The SIR measures the level of interferences from the other sources in each source estimate.

One can define the relative distortion due to interferences Dinterf as

Dinterf
4
=

‖einterf‖2∣∣∣〈ŝi,
si
‖si‖

〉∣∣∣2 , (2.36)
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and consequently the SIR as

SIR
4
= 10 log10D

−1
interf . (2.37)

2.4.3 Source to Artifacts Ratio (SAR)

The SAR measures the level of numerical artifacts in each source estimate. The relative

distortion due to algorithmic effects Dartif is

Dartif
4
=

‖eartif‖2∥∥∥〈ŝi,
si
‖si‖

〉
si
‖si‖ + einterf + enoise

∥∥∥2 , (2.38)

Hence, the SAR can be defined as

SAR
4
= 10 log10D

−1
artif . (2.39)

2.4.4 Source to Noise Ratio (SNR)

Finally, the relative distortion due to additive noise Dnoise is

Dnoise
4
=

‖enoise‖2∥∥∥〈ŝi,
si
‖si‖

〉
si
‖si‖ + einterf

∥∥∥2 . (2.40)

Hence, the Source to Noise Ratio (SNR) is

SNR
4
= 10 log10D

−1
noise. (2.41)

The SNR measures the error due to the additive noise on the sensors.

2.5 Conclusions

This chapter has considered the BSS method that will be used. Firstly, the model was

introduced and BSS assumptions were stated. The Gibbs Sampler was also presented.

The central theme of this chapter is signal expansion in a transformed domain. The

sources have to be sparse on a given basis and so a series of transforms were introduced

and their computational complexities were compared. As we will see, using a transform

that minimizes some form of entropy measure will result in significant advantages when

the Gibbs Sampler is applied. Finally, we introduced four different performance metrics

to evaluate the performances of various BSS algorithms.



Chapter 3

Overcomplete Dictionaries

In recent years, there has been a growing interest in representing signals using overcom-

plete dictionaries to achieve a sparse representation. For more details, see the papers by

Aharon [1], which discusses the K-SVD algorithm and Mitianoudis [86] and Lee [70], which

discuss the use of overcomplete dictionaries in underdetermined BSS. Besides, Malioutov

[78] demonstrates how to obtain optimal sparse representations using overcompleteness.

Finally, the processes to learn these dictionaries is presented by Lewicki [72].

Using an overcomplete dictionary that leads to a sparse representation can either

be chosen as a pre-specified linear transform, or designing its content to fit a given set

of signal examples i.e. adaptive. The former yields dictionaries with respect to which

representations can be readily found. This is the case with overcomplete wavelet and

Short-Time Fourier Transform (STFT). Tight frames [79, 112] are usually preferred as the

inversion is done using a pseudo-inverse [94] operation. The success of these dictionaries

depends on how suitable these sparsely describe the signals in question. We will be

considering two pre-specified overcomplete dictionaries in this report. In particular, we

will be examining the effectiveness of the Short-Time Discrete Cosine Transform (STDCT)

[92] and the Hybrid Transform (HT) [29, 30, 36, 87, 88]. The HT is a union of two bases,

namely the MDCT basis and the WT-Vai basis. Their performances will be compared to

the canonical orthonormal bases discussed in section 2.3.

3.1 Analysis and Synthesis

The analysis and synthesis operations are central to the development of overcomplete

representations. As usual, we will be adopting the notation Ψ for the analysis operator.

Ψ has N rows and K columns and K > N . The analysis operation can be written as

S̃ = SΨ (3.1)

21
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and Φ is the synthesis operator such that

S = S̃Φ. (3.2)

Since neither Ψ ∈ RN×K nor Φ ∈ RK×N is a square matrix, they cannot be inverted. It is

well known [20] that many natural signals can be sparsely represented in a proper signal

dictionary Φ, which is the synthesis operator. The pseudo-inverse of this dictionary is the

analysis operator

Ψ
4
=
(
ΦTΦ

)−1
ΦT . (3.3)

In linear algebra [107], this is also known as the left inverse such that ΨΦ = IN . Ψ

can be post-multiplied to (2.2) to give (2.6) as usual. In the following, we assume that

S̃ is a sparse matrix. For the Gibbs Sampler to estimate the sources and the mixing

matrix efficiently, we require the sources in the transformed domain to be sparse. It is

thus necessary to carry out the analysis operation. The synthesis operator is related to

the analysis operator via the following:

Φ
4
= ΨT

(
ΨΨT

)−1
. (3.4)

This is known as the right inverse such that ΨΦ = IN again. The reconstruction of the

sources from the estimated sources in the transformed domain requires the use of the

synthesis operator. If we post-multiply Φ to (2.19) we obtain

X̃Φ = Â(ˆ̃SΦ) + ˆ̃NΦ. (3.5)

Noting that X̃Φ = XΨΦ = XIN = X, we can equivalently express (3.5) as

X = ÂŜ + N̂, (3.6)

where Ŝ
4
= ˆ̃SΦ and N̂

4
= ˆ̃NΦ. Note that all we have done here is verify that the operations

result in perfect reconstruction (PR).

3.2 Overcomplete Dictionaries: Examples

The STDCT and the HT were chosen. The STDCT results in an overcomplete represen-

tation of the real signal of length N . There are K real coefficients in the transformed

domain. We contrast this to using a pair of bases [36], a MDCT and a wavelet basis.

This results in K = 2N coefficients in the transformed domain. The advantage of this

transform as we will see in Chapter 4 and 5 is that it tries to capture both the tonals and
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Figure 3.1: Window functions used in the STDCT.

the transients [29] of the audio signal and plausibly leads to sparser representations.

3.2.1 Short-Time Discrete Cosine Transform (STDCT)

The STDCT transforms a length N signal si to a length K = l × Nf signal s̃i. l and

Nf are defined as the window length and number of frames respectively. This transform

is overcomplete because K > N . Before the DCT-IV was taken, a tapering window was

first applied to smooth abrupt edges. We will see that this operation results in a sparser

representation. The windows are very similar to the one used in the MDCT. These are

shown in Figure 3.1. The minor changes are:

• The first and the last windows have a value of unity at the edges. This is to ensure

that ΨΨT = IN as will be detailed in Lemma 1. The reconstruction or synthesis

step, in equation (3.4), will be trivial if this constraint is enforced.

• The overlap between adjacent windows is b = 1/4 = 25% and b = loverlap/l is the

overlap fraction. The decomposition is overcomplete by about 25% and the length

of the overlapping segments is bl = l/4.

The windows here satisfy the symmetry (2.23) and quadrature (2.24) properties. Let the

l × l window matrices be

W(k) = diag
(
w(k)

)
, k = 1, 2, 3, (3.7)

where w(k) is the length l vector that contains the window coefficients. k takes on the

values 1, 2 and 3 which represent the first window, the middle windows and the last

window respectively as shown in Figure 3.1. The middle windows are all the same and

they differ from the first and the last windows. The analysis operator Ψ is a lapped block

diagonal matrix which has the structure as shown in Figure 3.2. Notice the b = 25%

overlap between adjacent blocks. ψ is a l × l, symmetric, orthonormal, DCT-IV matrix

that is applied to each of the windowed segments after the windowing has been performed.
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Figure 3.2: Lapped Block Diagonal Structure of Ψ; Note that K > N

Lemma 1. If the windows satisfy the symmetry (2.23) and quadrature properties (2.24),

the window matrices are defined as in (3.7) and consequently, the analysis operator Ψ

takes the form as shown in Figure 3.2 and b ∈ (0, 1/2], then

(
ΨΨT

)−1
= IN . (3.8)

Proof. Computing ΨΨT directly, we obtain a diagonal matrix

ΨΨT = diag



(
w

(1)
1 ‖ψ1

‖
)2

...(
w

(1)
(1−b)l‖ψ(1−b)l‖

)2(
w

(1)
(1−b)l+1‖ψ(1−b)l+1

‖
)2

+
(
w

(2)
1 ‖ψ1

‖
)2

...(
w

(1)
l ‖ψl‖

)2

+
(
w

(2)
bl ‖ψbl‖

)2(
w

(2)
bl+1‖ψbl+1

‖
)2

...(
w

(2)
(1−b)l‖ψ(1−b)l‖

)2

...(
w

(3)
bl+1‖ψbl+1

‖
)2

...(
w

(3)
l ‖ψl‖

)2



= diag



1
...

1

1
...

1

1
...

1
...

1
...

1



= IN (3.9)
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where w
(k)
n ∈ R is the nth element of the vector w(k) ∈ Rl and the vector ψ

i
∈ Rl is the

ith row of the DCT matrix ψ ∈ Rl×l. This is because, by the orthogonality property of

the matrix ψ, ψT
i
ψ
j

= 0 if i 6= j. Note also that all the rows and columns are normalized,

‖ψ
i
‖2 = 1 for 1 ≤ i ≤ l and the windows satisfy the properties

w(1)
n = 1, 1 ≤ n ≤ (1− b) l, (3.10)

w(2)
n = 1, bl + 1 ≤ n ≤ (1− b) l, (3.11)

w(3)
n = 1, bl + 1 ≤ n ≤ l. (3.12)

It remains to observe that remaining elements are also unity by the quadrature property.(
w

(1)
(1−b)l+n

)2

+
(
w(2)
n

)2

= 1, (3.13)(
w

(2)
(1−b)l+n

)2

+
(
w(2)
n

)2

= 1, (3.14)(
w

(2)
(1−b)l+n

)2

+
(
w(3)
n

)2

= 1, 1 ≤ n ≤ bl. (3.15)

Hence all the diagonal entries of the matrix ΨΨT equal to unity. The off-diagonal elements

are equal to zero. This completes our proof of (3.8) and Lemma 1.

Equipped with Lemma 1, the reconstruction step is now simple. Referring to equation

(3.4), the synthesis operator Φ takes the form

Φ = ΨT . (3.16)

The computational complexity of the STDCT is of the order O(K log2 l).

3.2.2 Hybrid Transforms (HT)

In [29], the authors were concerned with hybrid signal models that included components

of different kinds. More specifically, they limited their investigations to additive models

of the form

s(t) = ston(t) + str(t) + sr(t), (3.17)

where ston(t) is the tonal component, str(t) is the transient component and sr(t) is the

stochastic or residual component. Such models have been considered for modelling and

transformation [105], or for encoding or compression [71]. It turns out that the tonal com-

ponent ston(t) can be represented well using a MDCT (local cosine) basis. The transient

components str(t) can be expanded using a wavelet basis. The coefficients of both expan-

sions can be found by considering Hidden Markov Chains (HMCs) and Hidden Markov
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Transform STDCT HT

Complexity O(·) K log2 l NM +
∑Nf

p=1 lp log2 lp

Table 3.1: Comparison of computational complexities for the Overcomplete Dictionaries

Models (HMMs) [29]. The residual component sr(t) is typically taken to be zero.

With these in mind, we set the synthesis operator Φ ∈ R2N×N to be a concatenation

of two N ×N bases ΦMDCT and ΦDWT [36]. The DWT basis that we use is the WT-Vai

as described in section 2.3.3. Hence,

Φ =

[
ΦMDCT

ΦDWT

]
. (3.18)

We need to find out what the analysis operator Ψ is. Using equation (3.3) and the

orthonormality property of ΦMDCT and ΦDWT , we get

Ψ =
1

2

[
ΦT
MDCT ΦT

DWT

]
. (3.19)

This is just a straightforward application of the MDCT and the DWT. After the Gibbs

Sampling has been performed, one obtains estimates of the sources in the transformed

domain as in equation (2.19). ˆ̃S can then be used to reconstruct the sources using Ŝ
4
= ˆ̃SΦ.

Again this is just a simple inverse MDCT and inverse DWT. Hence, if

ˆ̃S =
[

ˆ̃S1
ˆ̃S2

]
, (3.20)

where ˆ̃S1 and ˆ̃S2 are n×N matrices, the reconstructed sources would simply be

Ŝ = ˆ̃S1ΦMDCT + ˆ̃S2ΦDWT . (3.21)

The computational complexity of the HT is simply the sum of the individual complexities

of the MDCT and DWT. This is compared to the STDCT in Table 3.1.

3.3 Conclusions

In this chapter, we have presented the motivation and theory behind overcomplete dic-

tionaries. We have discussed two overcomplete dictionaries, namely the STDCT and the

HT. In Chapter 5, we will be assessing their performance on the source separation algo-

rithm as shown in Figure 2.2. Now, we shall turn our attention to the performance of the

orthonormal transforms.



Chapter 4

Results: Orthonormal Bases

In this chapter, the results of the algorithm presented in Chapter 2 will be tested on

different sets of signals. We will show that there exists a close correlation between sparsity

of the sources in the transformed domain and the separation quality.

4.1 Introduction and Initialization

In line with the work done in [42], we study the mixing of n = 3 audio sources with m = 2

observations. The original mixing matrix was chosen to be

A =

[
0.8 cos(−π/3) 0.9 cos(−π/8) 0.8 cos(π/4)

0.8 sin(−π/3) 0.9 sin(−π/8) 0.8 sin(π/4)

]
(4.1)

and hence the independent components are given by the principal directions ϑ1 = −π/3,

ϑ2 = −π/8 and ϑ3 = π/4. We added i.i.d. Gaussian noise on each observation, which

resulted in the value of SNR ≈ 16.5 dB. This corresponded to σ = 0.015. The signals

were sampled at 8 kHz with length N = 65536 (≈ 8s).

4.1.1 Signals and Estimation

Different orthonormal transforms, as described in section 2.3, were taken on the 4 sets of

signals. These signals were chosen because they represent the spectrum of audio signals

of interest. They included speech, musical and percussion signals as well as a combination

of the three. Each Gibbs Sampling process was run until convergence was observed. The

MMSE estimates of A and S̃ were then computed from the final 1000 samples. The

different parameters were initialized with the values as shown in Table 4.1. Finally, the

discrete values from which the degrees of freedom αi are sampled from are chosen from a

set of values linearly spaced between 0.05 and 5, with step size 0.05.

27
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S̃ r2 σ V α λ
ones(n × N)

(
0 0 0

)
0.1 ones(n × N) ones(1,n) 0.01.*ones(1,n)

Table 4.1: Initialization of the parameters to be estimated

Transform Number 1 2 3 4 5 6
Transform Abbrev. DCT MDCT WT-Vai WT-Sym WPBB NT

Table 4.2: Correspondence between Transform Number and the orthonormal transform used

4.1.2 Representation of transforms and performance measures

In the following discussion, for convenience, integers will be used to denote the type of

transform and the performance metric used. These are summarized in Tables 4.2 and 4.3.

For example, transform 1 is the Discrete Cosine Transform (DCT) while performance

number 3 is the Source to Artifacts Ratio (SAR). In Figures 4.3a, b, c and d, we see that

there is also a seventh transform method used. It represents the effect of applying the best

basis algorithm as described in section 2.3.5, to the sources directly. Hence, this provides

the optimal value of ξ for the sources. Recall that in transform 5 (WPBB), we apply

the best basis algorithm to the first of the mixture components x1 as we do not know

the nature of the sources a priori. We then obtain Ψ1 and use this analysis operator to

decompose the sources. Although we calculated the sparsity indices based on the sources

themselves, we did not and certainly, could not implement it because the orthonormal

transform Ψ has to be the same for all the sources. In this case, the analysis operator Ψ

is most certainly not guaranteed to be the same for the n sources.

4.1.3 Implementation Details

The MDCT was implemented with a sine bell analysis window [28] of length 64ms (lp =

512 samples). This was empirically found [42, 43] to be the best window length. When

performing the DWTs, we used the coarsest decomposition scale L permissible and L

is typically much smaller than J the dyadic length of the signal. L is also the smallest

integer such that L > log2(M) − 1, where M is the length of the QMF. Most of the

transforms were implemented using the functions provided in WaveLab [17].

Performance Number 1 2 3 4
Performance Abbrev. SDR SIR SAR SNR

Table 4.3: Correspondence between Performance Number and the performance index used
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Figure 4.1: Evolution of r2, λ, α and σ2

4.1.4 Evolution of parameters

A typical plot of the evolution of the parameters is given in Figure 4.1. In view of the BSS

indeterminacies as described in section 2.1.1, the first row of the mixing matrix r1 was

clamped to
(

1 1 1
)

. Then, r2 denotes the corresponding second row of the mixing

matrix. The true values of r2 are the tangent of the principal directions ϑ1, ϑ2 and ϑ3.

Thus,

r2 =
(

tan(−π/3) tan(−π/8) tan(π/4)
)

=
(
−
√

3 1−
√

2 1
)
. (4.2)

4.1.5 Basis Invariance

As mentioned in [42], the performance criteria are invariant to a change of basis, so that

the SDR, SIR, SAR and SNR can be computed based on the time sequences (Ŝ compared

to S) or transform coefficients (ˆ̃S compared to S̃). Finally, the reader is encouraged to visit

the author’s BSS homepage at http://www2.eng.cam.ac.uk/~yfvt2/bss_demo.html to

listen to all the sound samples, including the original sources, mixtures and reconstructed

signals.

4.2 Speech Signals

As mentioned in Chapter 1, the chief motivation behind BSS and ICA is to understand the

‘cocktail party problem’ and the separation of speech signals from their mixtures. Thus it
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Figure 4.2: Speech Signals s11, s12 and s13

seems appropriate to start with the analysis of speech signals here. We will first examine

the capability of each transform to compress the sources. We seek the best possible

(sparsest) decomposition. Then, we will examine the results before a brief discussion is

presented. The three speech signals, as shown in Figure 4.2, are each of length N = 65536

and they were normalized such that σs = 0.1, so that each source has the same standard

deviation. Note that the first, second and third speech signals are labelled s11, s12 and s13

respectively. Notice that there are segments in which the signals are silent. For instance

in s11, the first trace of an audible sound is after ≈ 1 second (8000 samples).

4.2.1 Sparsity

The sparsity indices ξ are plotted against the transforms for each of the signals s11, s12 and

s13 in Figure 4.3a. Clearly, the MDCT and the WPBB provide the sparsest representation

of the three speech sources. We see that they are also very close to optimal. This can

be observed by comparing with transform 7. The DCT performs poorly in this case.

This shows that windowing and smoothing are very important, especially since there are

significant transient effects [30] in the speech signals. This explains why wavelets [30] are

able to provide a sparse representation of speech signals. Wavelets are able to model the

transients in an audio signal. For a more detailed analysis of wavelet analysis of transients,

the reader is encouraged to refer to [29, 30, 87]. We also perfom an analysis to quantify

the amount of tonals and transients in an audio signal in section 4.6.3.

4.2.2 Results

The complete set of numerical results are shown in Figure 4.4. As expected, the MDCT

provided the best separation quality. It gave the highest mean values for the SDR, SIR

and SAR. The WPBB outperformed the MDCT in terms of noise reduction. Very inter-

estingly, even if we were to apply the Gibbs Sampler directly to the sources without any

transform, the separation quality would be better than the DCT. The performances of the
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Figure 4.3: Sparsity Indices for Signals using Orthonormal Bases a) Speech Signals, b) Musical
Signals, c) Percussion Signals, d) Combination of Signals; Transform method: 1-DCT, 2-MDCT,
3-WT-Vai, 4-WT-Sym, 5-WPBB, 6-NT, 7-WPBB on sources (optimal)

Rank 1 2 3 4 5 6
Transform MDCT WPBB WT-Vai WT-Sym NT DCT

Table 4.4: Ranking of the Orthonormal Bases for Speech Signals

transforms are ranked in Table 4.4. To assess the sound quality, the reader may listen to

the reconstructed speech signals at http://www2.eng.cam.ac.uk/~yfvt2/Speech.html.

4.2.3 Discussion

There exists a strong correlation between sparsity (Figure 4.3a) and the separation quality

(Figure 4.4). The MDCT performed the best followed closely by the WPBB when applied

to one of the observations. The DCT performed the worst. Hence, to solve the ‘cocktail

party problem’, one should decompose the observations on a MDCT basis.

4.3 Musical Signals

The three musical signals are plotted in Figure 4.5. The first, second, and third musical

signals are strap guitar (s21), piano (s22) and guitar (s23) signals respectively. Unlike
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Figure 4.4: Performances of the various transforms on Speech Signals; Performance Indices:
1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s11, green-s12, brown-s13

speech, the musical signals exhibit greater tonals than transients. As a result, we expect

that the MDCT would perform very well here. This is substantiated in section 4.6.3.

4.3.1 Sparsity

The sparsity indices for each transform are plotted in Figure 4.3b. In this case, the DCT,

MDCT and WPBB provided very sparse representations. They were close to optimal.

Thus, the MDCT and DCT can model tonals accurately and wavelets are not as effective

here. However, if one chooses to use a wavelet packet best basis algorithm to find a

sub-optimal basis based on x1, the results would be just as good as the MDCT.

Figure 4.5: Musical Signals s21, s22 and s23
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Figure 4.6: Performances of the various transforms on Musical Signals; Performance Indices:
1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s21, green-s22, brown-s23

4.3.2 Results

The appalling performance resulting from the use of wavelets is demonstrated in Fig-

ure 4.6. Using either the WT-Vai or the WT-Sym to decompose the observations resulted

in negative SDRs for some reconstructed sources. The reconstructed sources were unnatu-

ral. This was the case even after the Gibbs Sampler had converged correctly, emphasizing

the fact that wavelets perform poorly for musical signals. The estimated second row of

the A matrix for the WT-Vai transform was r̂2 =
(
−1.7763 −0.3800 1.0782

)
and the

maximum deviation of the elements1 is within dmax ≈ 9% of the true value in equation

(4.2). The MDCT outperformed the other transforms in all the performance criteria.

4.3.3 Discussion

If we have prior knowledge that the original sources are musical signals, we should de-

compose the observations using the MDCT, DCT or WPBB. This would ensure that

the separation quality is high. The performances of the transforms are ranked in Ta-

ble 4.5 and the interested reader may listen to the reconstructed musical signals at

http://www2.eng.cam.ac.uk/~yfvt2/Musical.html.

1If the elements of r2 are denoted r
(i)
2 for i = 1, 2, 3 and the elements of r̂2 are denoted r̂

(i)
2 this

corresponds to dmax = max
i

∣∣∣∣ r(i)
2 −r̂

(i)
2

r
(i)
2

∣∣∣∣.
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Rank 1 2 3 4 5 6
Transform MDCT WPBB DCT NT WT-Vai WT-Sym

Table 4.5: Ranking of the Orthonormal Bases for Musical Signals

Figure 4.7: Percussion Signals s31, s32 and s33

4.4 Percussion Signals

We now turn our attention to percussion signals in this section. This analysis is particular

useful and relevant because percussion signals are widespread in biomedicine, for example

in the form of patients’ heartbeats. Here, the n = 3 percussion signals are plotted in

Figure 4.7. Note that the first, second and third percussion signals are labelled s31,

s32 and s33 respectively. It is obvious that these signals contain a lot of transients and

few tonals. This will be further quantified in section 4.6.3. Consequently, and as we

will see shortly, wavelets would perform well. They would be able to provide a sparse

representation of a percussion signal in the DWT domain.

4.4.1 Sparsity

We observe from Figure 4.3c that using either the DWT or the WPBB resulted in the

sparsest transform coefficients. The MDCT and the DCT do not model the transients in

the percussion signal as well as the DWT and the WPBB.

4.4.2 Results

Not surprisingly, the MDCT was not the best transform for percussion signals as shown

in Figure 4.8. The reconstructed signals were not as natural as the original ones and

clearly the transient parts are not as well defined. Vaidyanathan wavelets, as discussed

in section 2.3.3 are optimized for speech and audio coding and thus result in excellent

separation quality. The other wavelets also performed very well, resulting in high SDRs

(> 10 dB). From a subjective point of view, the ‘beats’ and rhythm of the drums can be

heard very clearly if either the DWT or the WPBB is used to decompose the sources.
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Figure 4.8: Performances of the various transforms on Percussion Signals; Performance In-
dices: 1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s31, green-s32, brown-s33

Rank 1 2 3 4 5 6
Transform WT-Vai WPBB WT-Sym MDCT DCT NT

Table 4.6: Ranking of the Orthonormal Bases for Percussion Signals

4.4.3 Discussion

Clearly, if one has prior knowledge that the underlying signals are percussive in nature,

the DWT is the obvious transform to use. The transform produces very good results

and its computational complexity is lower than the WPBB because the optimization

step in equation (2.28) is not required. The performances of the transforms for the

percussion signals are ranked in Table 4.6 and the sound samples can be found at http:

//www2.eng.cam.ac.uk/~yfvt2/Per.html.

4.5 Combination of Signals

To complete our discussion, a combination of the different types of signals was considered.

We chose 1 speech signal, 1 musical signal and 1 percussion signal from the collection

that has already been mentioned. The three signals used are s11, s22 and s33 and they

are shown in Figures 4.2, 4.5 and 4.7 respectively. Hence, there exists a mixture of tonals

and transients in the observations.
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Figure 4.9: Performances of the various transforms on Combination of Signals; Performance
Indices: 1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s11, green-s22, brown-s33

4.5.1 Sparsity

The sparsity indices are plotted in Figure 4.3d. The MDCT clearly provided the sparsest

representation but the WPBB came close. It was observed that a transform is required

to achieve the necessary compression before the Gibbs Sampler was applied.

4.5.2 Results

The results are shown in Figure 4.9. Again, we observe that the MDCT performed the

best. It was also the most superior when in terms of noise suppression. In this case, the

overall performances of the DCT, the DWT and the WPBB were very similar but DCT

outperformed the rest of the transforms for the synthesized musical signal s22.

4.5.3 Discussion

If one seeks to separate a mixture of signals that comprise an approximately equal

amount of tonals and transients, the MDCT would be the best. This is demonstrated

in the above experiment. The synthesized sound samples, which can be found at http:

//www2.eng.cam.ac.uk/~yfvt2/Com.html, substantiate this point. The performances of

the transforms are ranked in Table 4.7.
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Rank 1 2 3 4 5 6
Transform MDCT DCT WPBB WT-Vai WT-Sym NT

Table 4.7: Ranking of the Orthonormal Bases for Combination of Signals

4.6 Conclusions

This section concludes our discussion on the performances of the various orthonormal

bases on different sets of signals. The preceding experiments emphasize the close relation

between the degree of sparsity and the separation quality. This will be further substanti-

ated shortly. The best transforms are, undoubtedly, the MDCT and the WPBB. However,

the WPBB algorithm is fairly computationally expensive.

4.6.1 Relation between sparsity and performance metrics

Figure 4.10 shows the close relation between sparsity and performance. The data from the

preceding 4 experiments were gathered. For each transform and each set of signals, the

mean values of ξ, SDR, SIR, SAR and SNR were calculated. For the ease of presentation,

these are given the same symbols ξ, SDR, SIR, SAR and SNR. Figure 4.10a is a plot of the

SDR values against the sparsity indices. A linear least-squares fit and a quadratic fit are

also shown in red and blue respectively. We observe that there is a negative correlation

between the SDR and ξ. The equation of the quadratic is given as

SDR ≈ −4.4057× 10−5ξ2 − 0.1061ξ + 14.7013, (4.3)

and the correlation coefficient [9] is ρSDR = −0.927. Notice that the quadratic term is

very small. We conjecture that the relation between the sparsity index ξ and the SDR is

linear. Recall that the SDR is the overall separation performance criterion. This has a

profound implication - that the sparser a signal, the better the overall separation and the

relation is probably linear. The other relations are also almost linear.

SIR ≈ 7.4670× 10−4ξ2 − 0.3517ξ + 36.6957, ρSIR = −0.912, (4.4)

SAR ≈ 2.1247× 10−4ξ2 − 0.0941ξ + 14.1323, ρSAR = −0.848, (4.5)

SNR ≈ 1.7826× 10−3ξ2 − 0.4139ξ + 40.3201, ρSNR = −0.892. (4.6)

This can also be observed from Figures 4.10b, c and d. From equation (4.3), we note that

the magnitude of the gradient of the least-squares line for the SDR is around 0.1. Hence,

if one reduces the sparsity index by 10, the SDR will increase by ≈ 1 dB. In other words,

d(SDR)

dξ
≈ −0.1 dB. (4.7)
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Figure 4.10: Correlation between mean of sparsity indices ξ and mean of the Performance
Indices for Orthonormal Bases

In addition, if there is a lower limit on the value of ξ that one can achieve, this directly

places a upper limit on the value of SDR. We emphasize that equation (4.7) is only a

conjecture and further experiments are required to validate it.

Conjecture 1. If the the audio sources are of the same length and are all normalized

to the have same standard deviation2, the SDR, in dB, and the sparsity index ξ are

approximately linearly related.

4.6.2 Performance of Transforms

Across the various sets of signals, it was observed that the MDCT and the WPBB per-

formed the best. This was because, in general, they provided the best i.e. sparsest

representation of the signals. The MDCT is particularly well suited for audio signals [28].

The MDCT is also used in audio coders for low-bit rates and in spectral estimation. As

mentioned previously, wavelets can model the transient nature of speech and percussion

signals. The WPBB algorithm gives the best basis based on one of the observations. We

have seen that this gives good separation quality even though it was not applied on the

sources directly. In fact, it is the most appropriate transform to use if one has no prior

knowledge of the nature of the sources.

2As a reminder, in these experiments, the length of the signals is N = 65536 and the standard deviation
is σs = 0.1.
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Type Speech Musical Percussion
Sources s11 s12 s13 s21 s22 s23 s31 s32 s33

Itr 0.4154 0.4040 0.5615 0.0841 0.0208 0.0816 0.9203 0.7987 0.6607
Iton 0.5846 0.5960 0.4385 0.9159 0.9792 0.9184 0.0797 0.2013 0.3393

Table 4.8: Transient and tonal indices for the audio signals

Type Speech Musical Percussion Combination
Pref. Transform MDCT MDCT DWT MDCT

Mixtures x1 x2 x1 x2 x1 x2 x1 x2

Itr 0.4216 0.4237 0.2865 0.2493 0.6632 0.6962 0.3595 0.4197
Iton 0.5784 0.5763 0.7135 0.7507 0.3368 0.3038 0.6405 0.5803

Table 4.9: Transient and tonal indices for the mixtures and the preferred transform

4.6.3 Effect of the Sources

As we have seen, the transientsness of the signals is related to the performance of the

transforms. We define the transient and tonal indices Itr and Iton of a signal vector s as

Itr
4
=

τM
τM + τW

, (4.8)

Iton
4
=

τW
τM + τW

= 1− Itr, (4.9)

where

τM
4
=

(
N∏
i=1

∣∣∣〈s,ψ
(M)
i

〉∣∣∣2)1/N

, τW
4
=

(
N∏
i=1

∣∣∣〈s,ψ
(W )
i

〉∣∣∣2)1/N

(4.10)

are the geometric means of the MDCT and DWT coefficients respectively. ψ
(M)
i and ψ

(W )
i

for 1 ≤ i ≤ N , are the length N basis vectors of the MDCT and the DWT respectively.

We refer the reader to [8, 29, 87] for more details. Itr and Iton were computed for the

nine signals and tabulated in Table 4.8 and we confirm that percussion signals contain

the most transients followed by speech signals. Musical signals contain the most tonals.

A plausible improvement to the algorithm is to compute Itr for the mixtures x1 and

x2, before the application of the transform. This was done and the results are displayed

in Table 4.9. In this pre-processing step, if the mean value of the transient index for the

mixtures, Ītr exceeds a threshold value, say Ī threstr = 0.5, the DWT (either WT-Vai or

WT-Sym) should be used. Otherwise, the MDCT would be the preferred transform. We

observe from Table 4.9 that this scheme concurs with our conclusions from the experiments

performed, i.e. the DWT should be used for the set of percussion signals and the MDCT

for the other set of signals. We emphasize that the chief aim is to achieve a very sparse

representation for the sources S̃ to maximize the various performance measures.



Chapter 5

Results: Overcomplete Dictionaries

In Chapter 3, the theory behind overcomplete dictionaries was presented. In particular, we

introduced two overcomplete transforms, namely the Short-Time Discrete Cosine Trans-

form (STDCT) and the Hybrid Transform (HT). We recall that the HT is a concatenation

of a MDCT and a DWT (WT-Vai) basis. Both transforms were implemented successfully

and the results are presented here. We will briefly compare the use of overcomplete dictio-

naries and orthonormal transforms. We are going to try to use overcomplete dictionaries

to see if we can further improve sparsity of the sources and thus, hopefully, performance.

5.1 Introduction and Initialization

A and σ were given the same values as mentioned in section 4.1. In addition, the different

parameters were also initialized with the same values as shown in Table 4.1. This was

done to ensure that the results can be compared, without bias, to those obtained using

the orthonormal transforms in Chapter 4. During the implementation of the STDCT, the

parameters as described in Chapter 3, assumed the values in Table 5.1. As a reminder, b

is the overlap fraction, l is the window length and Nf is the number of frames.

5.2 Speech Signals

The same set of speech signals, as shown in Figure 4.2, were tested using the two over-

complete transforms. The sparsity index ξ was computed and plotted in Figure 5.1a.

As the sparsity index ξ
4
= ‖s̃i‖1/‖s̃i‖2 involves a normalization in the denominator, we

Parameter b l bl Nf K = l ×Nf

Numerical Value 1/4 1024 256 85 87040

Table 5.1: Parameters used in the implementation of the STDCT

40
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Figure 5.1: Sparsity Indices for Signals using Overcomplete Dictionaries a) Speech Signals,
b) Musical Signals, c) Percussion Signals, d) Combination of Signals; Transform method: 1-
STDCT, 2-HT

can compare it to the sparsity indices generated using the orthonormal transforms. The

HT provided sparser representations of the signals as compared to the STDCT. How-

ever, referring to Figure 4.3a, we observe that some of the orthonormal bases performed

much better than the overcomplete dictionaries. The results are presented in Figure 5.2.

Not surprisingly, the HT outperformed the STDCT here. The separation quality was

higher in all the performance criteria. Referring to Figure 4.4, we observe that as the

MDCT provided sparser representations of the signals, the performance of the MDCT

was marginally better than the HT. Speech signals contain almost equal amounts of tran-

sients and tonals (Table 4.8) and hence the Hybrid Transform, which models both tonals

and transients, performs well. However, its performance was nonetheless slightly poorer

than the MDCT. The computational expense was also doubled. For the overcomplete

dictionaries, all the original signals, mixtures and synthesized sources can be found at

http://www2.eng.cam.ac.uk/~yfvt2/Overcom.html.

5.3 Musical Signals

Similarly, the STDCT and the HT were tested on the musical signals. Since the musical

signals contain more tonals than transients, we expect the STDCT to perform at least
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Figure 5.2: Performances of the two Overcomplete Dictionaries on Speech Signals; Perfor-
mance Indices: 1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s11, green-s12, brown-s13

as well as the HT. Referring to Figure 5.1b, we observe that indeed it does. The results

are plotted in Figure 5.3. Both overcomplete representations performed similarly. In this

case, the overcomplete dictionaries outperformed the best orthonormal transform, the

MDCT. This is promising but not worthwhile given the increased computational expense.

5.4 Percussion Signals

The percussion signals (Figure 4.7) contain more transients than tonals (Table 4.8). This is

also reflected in Figure 5.1c where we see that the HT is able to produce much sparser rep-

resentations of the percussion signals than the STDCT. Figure 5.4 emphasizes, once again,

that sparsity is of paramount importance to separation quality. The HT outperformed the

STDCT in all the criteria. Its performance was comparable to the Vaidyanathan Discrete

Wavelets (WT-Vai) and the Wavelet Packet Best Basis (WPBB) algorithm.

5.5 Combination of Signals

Finally, we turn our attention to the results obtained when the overcomplete dictionaries

were used to decompose a combination of signals. Recall that we chose 1 speech signal,

1 musical signal and 1 percussion signal from the collection that was presented. The

sparsity results are shown in Figure 5.1d. We see that the HT provided a slightly sparser

representation overall. However, the difference in the separation quality, as shown in

Figure 5.5, was minimal. Both the overcomplete dictionaries performed almost as well as

the MDCT, which was discussed in section 4.5.
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Figure 5.3: Performances of the two Overcomplete Dictionaries on Musical Signals; Perfor-
mance Indices: 1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s21, green-s22, brown-s23

Figure 5.4: Performances of the two Overcomplete Dictionaries on Percussion Signals; Per-
formance Indices: 1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s31, green-s32, brown-s33
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Figure 5.5: Performances of the two Overcomplete Dictionaries on the Combination of Signals;
Performance Indices: 1-SDR, 2-SIR, 3-SAR, 4-SNR; Signals: blue-s11, green-s22, brown-s33

5.6 Conclusions

The overcomplete dictionaries provided good separation quality but the increased com-

putational complexity was a major drawback. For instance, the HT took twice as long to

run but produced results of similar quality compared to the MDCT.

5.6.1 No Significant Improvement

The overcomplete dictionaries neither improve the sparsity nor the separation quality.

The orthonormal bases, in particular the MDCT and the WPBB, performed just as well.

There is a also negative relation between the sparsity indices and the separation quality

but this is not as straightforward as for the orthonormal transforms (See conjecture 1 on

page 38). Referring to Figures 5.1 to 5.5, we conclude that the if the sources are sparsely

represented, the separation quality is, in general, better.

5.6.2 Proposed Explanation

We perform an analysis to understand why, contrary to intuition, the overcomplete dic-

tionaries performed relatively poorly. Let s be a length N signal, which has a sparse

representation of length K, s̃sparse using an overcomplete dictionary Φ ∈ RK×N . Hence,

s = s̃sparseΦ. (5.1)

We analyzed the signal using the analysis operator Ψ to obtain a signal s̃ana.

s̃ana = sΨ. (5.2)
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Using equations (3.3) and (5.1), we obtain

s̃ana = s̃sparse
(
Φ(ΦTΦ)−1ΦT

)
= s̃sparseĨK . (5.3)

where ĨK
4
= Φ(ΦTΦ)−1ΦT is the projection matrix onto the the column space of Φ [107].

Note that ĨK 6= IK , hence s̃ana 6= s̃sparse. This means that the signal in the transformed

domain s̃ana may not be sparse even though the signal s may have a sparse representation

s̃sparse. Thus, the overcomplete dictionaries performed poorer than expected.

5.6.3 Further Work

To alleviate the above problem, we propose two methods to improve the sparsity and

hence the results.

Optimize to find Φ

One can conduct a study on how to optimize ĨK , or equivalently Φ, such that it is as

close as possible to IK . In other words, one seeks to find a representation Φ∗ such that

Φ∗ = arg min
Φ

f(Φ)
4
= ‖ĨK − IK‖F , (5.4)

where ‖C‖F =
√∑

i

∑
j cij =

√
Tr(CCH) is the Frobenius1 norm of the matrix C.

Alternative Gibbs Sampling

Let us consider the following model [115, 116] instead.

X = AS̃Φ + N (5.5)

Hence, given X, we want to estimate the mixing matrix A, the sparse sources contained

in the matrix S̃ and the standard deviation of the noise σ directly. All the conditional

densities in (2.12) to (2.17) stay the same except for p(S̃|A(k−1), σ(k−1),V(k−1), X̃) which

is replaced by p(S̃|A(k−1), σ(k−1),V(k−1),X). This has to be re-derived. We conjecture

that this Gibbs Sampling scheme would produce better results because S̃ is assumed to

be sparse given the dictionary Φ and we are estimating S̃ directly from the observations

X. The analysis step S̃ = SΨ, which does not guarantee sparsity, is avoided. As a

consequence, the problem as described in section 5.6.2 may also be avoided.

1CH is the conjugate transpose or Hermitian of the matrix C.



Chapter 6

Conclusion

In this project, we have investigated the use of different bases and overcomplete dictionar-

ies in Blind Audio Source Separation. A Bayesian approach based on Gibbs Sampling [42]

was used to estimate the sources in the transformed domain S̃, the mixing matrix A and

the noise standard deviation σ. Sparsity of the sources was a central theme of the whole

project and was found to be integral to the source separation algorithm’s performance.

6.1 Summary

The chief aim in BSS is to recover the n sources from the m mixtures and we exploited the

use of a Markov Chain Monte Carlo (MCMC) method in the form of the Gibbs Sampler.

The algorithm is summarized in Figure 2.2. Gibbs Sampling allows us to consider the more

difficult underdetermined (m < n) and noisy case. Here, various transforms were applied

on different sets of signals, before the application of the Gibbs Sampler, and they yielded

vastly diverse results. These transforms included orthonormal bases and overcomplete

dictionaries. We will now summarize the key ideas developed in the project.

6.1.1 The MDCT is an excellent basis for BSS

It is well known that the MDCT [28] provides sparse representations of audio signals and,

in particular, musical signals. The MDCT is used in most current audio coding protocols

[12, 14] such as MPEG and Windows Media Player. We used it to decompose the source

signals for the purpose of producing sparse representations before the application of the

Gibbs Sampler. Chapter 4 substantiates that the MDCT is a good basis for BSS, except

when the signals are percussive in nature. The transients [30] are not well modelled by

the MDCT. Speech and musical signals, which comprise significant amounts of tonals, are

well modelled by the MDCT and it produces very impressive results. The MDCT does

not perform so well on percussion signals.

46
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6.1.2 Best Basis Algorithm finds an excellent basis for BSS

An adaptive algorithm based on the observations also performs well. As the sources

and the mixing process were unknown, the next best thing was to apply the algorithm

on the observations and find a basis Φ1 such that the L1 norm of the observation x1

in the transformed domain was minimized. This also produced remarkable results as

demonstrated in Chapter 4. In fact, it is probably the best transform to use if we do not

have prior knowledge of the nature of the sources. It models both tonals and transients

well and can deal adequately with signals that are percussive in nature as well as otherwise.

Compared to the MDCT, the audio quality appears to be better for the percussion and

speech signals. The MDCT is more superior for the musical signals.

6.1.3 Sparsity is very important

An important observation was made from Figure 4.10. From the experiments that were

conducted, we conjecture that the Source to Distortion Ratio (SDR) in decibels (dB) is a

linear function of the sparsity index ξ as detailed in equation (4.7) and conjecture 1.

6.1.4 Overcomplete dictionaries provide marginal improvement

It is somewhat surprising that the overcomplete dictionaries did not perform much better

than the orthonormal bases. They failed to provide sparse representations for the sources.

A plausible explanation is provided in section 5.6.2. This is attributed to the nature of

the Moore-Penrose pseudo-inverse [94]. Further research can be conducted to find ways

of producing a dictionary Φ such that ĨK is as close to the identity matrix IK as possible.

6.1.5 Computational Complexities

MCMC methods are computer-intensive [47] and can only be done off-line and when the

complexity of the problem warrants their use. Despite this, the Gibbs Sampling approach

is robust to the initialization of the parameters as compared to EM [31, 42]. The sampling

approach is feasible because it is easy to sample from univariate conditional distributions.

6.2 Further Work

To conclude the overview of the audio source separation problem, we will briefly outline

some of the most important outstanding issues in blind audio source separation. Research

in these issues might enhance the performance of current source separation systems. Fi-

nally, some interesting extensions using current technologies are also suggested here.
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6.2.1 Alternative Gibbs Sampling

As mentioned in section 5.6.3, we can derive the density p(S̃|A(k−1), σ(k−1),V(k−1),X),

implement it and compare the new Gibbs Sampling scheme to the results we have obtained

in this project. We expect that this sampling scheme would improve the performance.

6.2.2 Alternative Prior Distributions

We can apply the Bayesian approach using priors for the elements in S̃. The authors in

[86] consider using the Laplacian distribution

p(s̃i,k|αi) =
1

2αi
exp

(
−|s̃i,k|

αi

)
, αi > 0 ∀i. (6.1)

Similar to the Student t distribution, αi contains information about the width or variance

of the distribution. Other authors [31, 89] also considered Gaussian Mixture Models

p(s̃i,k|ωi,σi) =
c∑
j=1

ωi,jN (s̃i,k|0, σ2
i,j),

c∑
j=1

ωi,j = 1. (6.2)

The conditional densities p(θy|θ−y, X̃) will have to be derived and it will be interesting

to observe whether these priors produce better results than the Student t prior.

6.2.3 Convolutive BSS

We have thus far only considered the linear, instantaneous and noisy model. In the

convolutive BSS task [15, 16, 84], we can represent the mixing process as

xt =
L−1∑
l=0

Alst−l + nt, 0 ≤ t ≤ N − 1 (6.3)

where Al is a sequence of m×n matrices, which are the impulse responses of the acoustical

environment. We may possibly use the Bayesian approach to solve this more realistic

problem. Convolutive mixing can be rearranged [13] into an instantaneous mixing model.

6.2.4 BSS with unknown number of sources n

In our study thus far, we have assumed that the number of sources n is known. Certainly,

in reality, one cannot make this assumption based on the observations. It would be useful

and certainly, intriguing to study the possibility of estimating the number of sources

before attempting to separate them. Cichocki uses neural networks [22, 23] but a Bayesian

approach may produce equally promising results.
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Probability Density Functions

A.1 Standard Distributions

The following probability density functions (pdfs) are commonly used in this report.

1. Univariate Gaussian Distribution N (x|µ, σ2):

N (x|µ, σ2) = (2πσ2)−1/2 exp

(
− 1

2σ2
(x− µ)2

)
(A.1)

2. Multivariate Gaussian Distribution N (x|µ,Σ):

N (x|µ,Σ) = |2πΣ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(A.2)

3. Gamma Distribution G(x|γ, β):

G(x|γ, β) =
xγ−1

Γ(γ)βγ
exp

(
−x
β

)
I[0,+∞)(x) (A.3)

4. Inverted-Gamma Distribution IG(x|γ, β):

IG(x|γ, β) =
x−(γ+1)

Γ(γ)βγ
exp

(
− 1

βx

)
I[0,+∞)(x) (A.4)

A.2 Conditional Densities

The following conditional densities are used in the Gibbs Sampling algorithm as described

in section 2.2.1. For the sake of brevity, we refer the interested reader to [42] for the

detailed derivations.
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1. Sampling S̃:

p(S̃|θ−S̃, X̃) =
N−1∏
k=0

N (̃sk|µs̃k ,Σs̃k) (A.5)

with Σs̃k =
(

1
σ2 ATA + diag(Vk)

−1
)−1

and µs̃k = 1
σ2 Σs̃kA

T X̃k.

2. Sampling σ and A.

p(σ2|θ−(A,σ), X̃) = IG(ασ, βσ) (A.6)

with ασ = (N−n)m
2

and 2
βσ

=
∑m

i=1

∑N−1
k=0 x̃

2
i,k −

(∑N−1
k=0 x̃i,ks̃

T
k

)(∑N−1
k=0 s̃ks̃

T
k

)−1

×
(∑N−1

k=0 x̃i,ks̃k

)
. Let ri be the transposed rows of A such that AT = [r1 . . . rm],

p(A|θ−A, X̃) =
m∏
i=1

N (ri|µri ,Σr) (A.7)

with Σr = σ2
(∑N−1

k=0 s̃ks̃
T
k

)−1

and µri = 1
σ2 Σr

∑N−1
k=0 x̃i,ks̃k. As mentioned in sec-

tion 4.1.4, r1 is clamped to [1, 1, 1] to resolve the BSS indeterminacies.

3. Sampling V:

p(V|θ−V, X̃) =
N−1∏
k=0

n∏
i=1

IG
(
νi,k|γνi , βνi,k

)
(A.8)

with γνi = αi+1
2

and βνi,k = 2
s̃2i,k+αiλ

2
i
.

4. Sampling α:

p(α|θ−α, X̃) ∝
n∏
i=1

P
−(αi2 +1)
i

Γ
(
αi
2

)N (
αiλ

2
i

2

)αiN

2

exp

(
−αiλ

2
i

2
Ri

)
p(αi) (A.9)

with Ri =
∑N−1

k=0
1
νi,k

and Pi =
∏N−1

k=0 νi,k. It is difficult to sample from p(α|θ−α, X̃)

[42, 43] but since the precise value of αi is unlikely to be important provided it is

within an appropriate small range, we sample α from a uniform grid of discrete

values with probability masses proportional to equation (A.9) with p(α) ∝ 1 [63].

5. Sampling λ:

p(λ2
i |θ−λ, X̃) = G(γλi , βλi) (A.10)

with γλi = αiN
2

and βλi = 2
αiRi

.
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[112] Vetterli, M. and Kovačević, J. Wavelets and Subband Coding. Prentice Hall, 1st

edition, 1995.

[113] Wang, W., Chambers, J.A. and Sanei, S. A Novel Hybrid Approach to the Per-

mutation Problem of Frequency Domain Bind Source Separation. ICA 2004, pages

532–539, 2004.

[114] Wickerhauser, M.V. Adapted Wavelet Analysis from Theory to Software. AK Peters,

Ltd., Wellesley, MA, 1994.

[115] Wolfe, P.J. and Godsill, S.J. Bayesian estimation of time-frequency coefficients for

audio signal enhancement. In Advances in Neural Information Processing Systems.

The MIT Press, 2003. Cambridge, MA.

[116] Wolfe, P.J., Godsill, S.J. and Ng, W.J. Bayesian variable selection and regularisation

for time-frequency surface estimation. J.R. Statist. Soc. B, 2004.

[117] Yau, R. Macroeconomic Forecasting with Independent Component Analysis. Tech-

nical Report 741, Econometric Society, Aug 2004.
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