
Inference Algorithms for the Multiplicative Mixture

Mallows Model

Abstract—A popular approach to obtain a consensus ranking
from ranking data is based on the probabilistic, distance-
based Mallows model comprising of a modal permutation and
dispersion parameters. Often, the population consists of several
subpopulations. As a result, finite mixture models are used to
distinguish latent sub-groups of individuals in a heterogeneous
population. Given a finite number of subpopulations each based
on the Mallows model, a popular inference approach is the
computationally intensive expectation maximization algorithm
for additive models. We address the drawbacks of this model
using a novel multiplicative mixture Mallows model (M4). Given
complete ranking observations from a heterogeneous population,
we derive inference algorithms for the joint estimation of the
parameters and the consensus rankings of the component dis-
tributions. We numerically validate the permutation estimation
performance of the proposed algorithms on synthetic datasets.
We also demonstrate the goodness-of-fit using the Bayesian
information criterion and the integrated complete likelihood on
the real-world APA and Sushi datasets.

I. INTRODUCTION

Ranking is an essential ingredient of a gamut of applications

such as electoral preference learning, personalized advertise-

ment targeting, recommender systems, etc. Typically ranking

data is obtained from surveys and market studies where the

participants provide complete or partial list of items in the

order of preference, which we refer to as a rankings. The

design of a ranking system involves learning an appropriate

ranking model based on the nature of the rankings and

subsequently obtaining the consensus ranking that best agrees

with the given sample permutations.

Typically, given n items, the survey participants indepen-

dently generate rankings of length t ≤ n. There is substantial

amount of work on models, algorithms and guarantees that

consider observations in the form of pair-wise preferences

(t = 2) [1], [2], [3] and for rankings of length 2 ≤ t ≤ n

[4], [5]. We are interested in the Mallows model which is

a probabilistic distance-based modeling approach to analyze

rankings [5], [6]. Here, each observation is regarded as a noisy

version of the ground truth permutation whose probability of

occurence is inversely related to the distance between itself

and the ground truth permutation [5]. The inference problem in

Mallows’ model consists of estimating the model parameters

and the underlying consensus ranking using the Kendall-Tau

distance metric [5], [7].

Real world survey data often consists of samples from

heterogeneous subpopulations. It is pragmatic to model the

global population as consisting of subpopulations of rankers

who share a common preference behaviour and thus, each

cluster is characterized by a unique consensus ranking. In

the context of the permutation-based Mallows model, additive

mixture models are commonly employed, where the expecata-

tion maximization (EM) algorithm is used for inference [8],

[9]. The critical drawback of these inference techniques is

that the expectation requires weighted summations over all

n! possible permutations. For large n, the complexity of EM

algorithm is prohibitive and the convergence is slow [9].

Furthermore, in [10], the authors note that in high-dimensions,

the posterior distribution behaves similarly to the individual

components of the additive mixture density, leading to a

vacuous modelling of heterogeneous population.

To address the computational shortcomings of additive mix-

ture models, we propose a novel, low-complexity multiplica-

tive mixture Mallows model (M4), where the overall mixture

distribution is an exponentially weighted product of the com-

ponent distributions, akin to the product of experts model [10].

In the theory of hypothesis testing, such a product mixture

distribution is a tilting from one component distribution to

another [11, Chapter 11]. Based on the concept of tilting,

we propose a sample-wise cluster assignment where every

sample is a weighted product of two out of M component

distributions. Our contributions are as follows:

• We propose a greedy approach for joint estimation of the

dispersion parameters and consensus ranking based on

the concave convex procedure (CCCP) and the Stochastic

Gradient Descent (SGD) algorithm rendering the overall

algorithm to be implementation friendly.

• We validate our methods on real-world datasets such as

the APA and the Sushi datasets using the Bayesian in-

formation criterion (BIC) and Integrated Complete Like-

lihood (ICL) [12] and demonstrate the goodness-of-fit of

M4 vis-à-vis additive mixture models and single com-

ponent distributions. We also contrast the computational

ease of M4 vis-à-vis additive models.

• We also validate the consensus ranking recovery perfor-

mance of the proposed algorithms on synthetic datasets.

II. THE MALLOWS MODEL AND PRELIMINARIES

We now describe the Mallows model, hence laying the

foundation for inference in the M4. Let π denote the ranking

of a survey participant when queried over n items in the

decreasing order of preference, i.e., π is a permutation over

the set [n] = {1, . . . , n}, where π(l) denotes the rank of l in

π. Let Ω be the set of all n! possible rankings and d(·, ·) be a

distance function on Ω×Ω, such that d(πi, πj) ≥ 0 for every

πi, πj ∈ Ω, and d(πi, πj) = 0 iff πi = πj .



A. Mallows Model

In the vanilla Mallows model [6], the rankings are generated

from a probability density function given by

pθ(π) =
exp(−θd(π, π0))

ψ(θ)
, π ∈ Ω, θ > 0, (1)

where π0 represents the consensus ranking and θ is an inverse

scale dispersion parameter such that when θ → ∞, pθ(π)
concentrated at the consensus ranking π0 and when θ → 0,

pθ(π) is the uniform distribution over all permutations [5].

For the Kendall-Tau distance, every permutation π is uniquely

determined from n− 1 integers (sufficient statistics), given by

Vj(π) =
∑

l>j

1 {l ≺π j} and d(π, π0) =

n−1
∑

j=1

Vj(ππ
−1
0 ), (2)

where i ≺π j means that i is ranked before j in π, 1{·}
is the indicator function, and Vj(ππ

−1
0 ) ∈ {0, . . . , n − j}.

In [5], it has been shown that that the model in (1) factors

into a product of independent univariate exponential models,

one for each Vj(π) where j = 1, . . . , n − 1. A parametrized

generalization of the Mallows model is given by

Pr(Vj(ππ
−1
0 ) = vj) =

exp (−θjvj)

ψj(θj)
, vj = 0, 1, . . . , n− j,

(3)

where ψj(θj) = (1− exp−((n− j+1)θj))(1− exp(−θj))
−1

is the normalization constant.1 The joint Mallows distribution

[5] is a product of independent univariate exponential models,

one for each Vj(ππ
−1
0 ) given as

Pr(V1(ππ
−1
0 ) = v1, . . . , Vn−1(ππ

−1
0 ) = vn−1)

=
n−1
∏

j=1

exp (−θjvj)

ψj(θj)
. (4)

III. PERMUTATION-BASED MULTIPLICATIVE MIXTURE

MALLOWS MODEL (M4)

We present the M4 model for learning the ground-truth

permutations and the associated dispersion parameters of the

Mallows model. Consider a heterogeneous population consist-

ing of M clusters, where the m-th cluster is characterized by

a ground-truth permutation πm0 and parameters θm ∈ R
n−1
+ .

The Kendall-Tau distance [7] between a given sample πk and

the m-th consensus ranking πm0 is given by

Vmj(τk,m) =
∑

l>j

1
{

l≺τk,m
j
}

, where τk,m = πkπ
−1
m0. (5)

Given K independent and identically distributed (i.i.d.)

sample permutations π = [π1, . . . , πK ], M component dis-

tributions and vm(k) = {vmj(k)}
n−1
j=1 , a weighted additive

mixture distribution is given by [13]

p(vm(k)|θ) =

M
∑

m=1

wmpm(vm(k)|θm), (6)

where wm represents the mixing weight of the m-th compo-

nent distribution given by pm(vm(k)|θm). The Kendall-Tau

distance for the k-th sample, vm(k) is an n− 1 length vector

whose j-th entry is given by vmj(k) = Vmj(πkπ
−1
m0) (cf. (5)).

Rewriting (6) in terms of the per-sample latent boolean weight

vector zk = [zk(1), . . . , zk(M)]T such that
∑M

m=1 zk(m) =

1We write Pr(Vj(ππ
−1

0
) = vj) as p(vj) in the sequel.

1, and p(zk(1) = 0, . . . , zk(m) = 1, . . . , zk(M) = 0) = wm,

we obtain [14]

p(vm(k)|θ) =
M
∑

m=1

wm

M
∏

m=1

pm(vm(k)|θm)zk(m), (7)

where θ ∈ R
M×(n−1) consists of θ1, . . . , θM as its columns.

Setting zk(m) = 1 implies that the k-th sample is a member

of the m-th subpopulation [14]. Hence the distribution of the

k-th sample vm(k) conditioned on θ and zk is

p(vm(k)|θ, zk) =
1

c(zk, θ)

M
∏

m=1

pm(vm(k)|θm)zk(m), (8)

where c(zk, θ) is the partition function. The model in (8)

resembles the product of experts model proposed in [10]. In

fact, the ranking model for the homogeneous population in [7]

is a special case of the M4 model when we set M = 1 and

zk(1) = 1 for all k.

We relax the constraint on the boolean nature of vector zk,

and assume that its m-th entry zk(m) ∈ [0, 1]. This model is

partly inspired by the tilting of probability distributions, which

is an ubiquitous concept in hypothesis testing [11, Ch. 11].

Instead of assigning a given sample to one of the M subpop-

ulations, we assign it to one of the
(

M
2

)

size-2 subpopulations,

where each of the M hypotheses are characterized by distinct

Mallows model. Accordingly, the weight vector zk is 2-sparse

(i.e., ‖zk‖0 = 2).

We assume that the distribution of permutations in each

subpopulation is a Mallows distribution defined by

pm(vm(k)|θm) =

n−1
∏

j=1

exp{−θmjvmj(k)}

ψj(θj)
. (9)

Hence, the M4 can be written as

p(v(k)|θ, zk) =
exp

{

−
∑M

m=1 zk(m)
∑n−1

j=1 θmjvmj(k)
}

c(zk, θ)
,

(10)

where v(k) = [v1(k), . . . ,vM (k)] and zk =
[zk(m), . . . , zk(m)] and z = [z1, . . . , zK ]. The partition

function can be written as c(zk, θ) =
∏n−1

j=1 cj(zk, θj) where

cj(zk, θj) =
∑

vmj(k)

∏M
m=1 pj(vmj(k))|θmj)

zk(m). Thus,

the overall mixture distribution of the k-th sample is

p(v(k)|θ, zk) =
exp

{

−
∑M

m=1 zk(m)
∑n−1

j=1 θmjvmj(k)
}

∏n−1
j=1 ψj

(

∑M
m=1 zk(m)θmj

) .

(11)

IV. MAJORIZATION-MINIMIZATION (M-M) ALGORITHM

The M-M framework [15] solves difficult optimization

problems by iteratively minimizing a majorizing function until

a local optimum is obtained. We present an M-M algorithm for

parameter estimation in the M4 model. Given K i.i.d. sample

permutations, the goal is to estimate (z, θ), assuming that the

ground-truth permutations πm0 are known. We address the

estimation of πm0 in Sec. IV-B. The log-likelihood is

ℓ(z, θ) =

K
∑

k=1

log p(v(k)|θ, zk) (12)



Let αkj(m) = zk(m)θmj . The log-likelihood given above can

be expressed as ℓ(z, θ) = −
∑K

k=1

∑n−1
j=1 ℓ(αkj), where

ℓ(αkj) = α
T
kjvj(k)− log

(

1− exp
[

−

M
∑

m=1

αkj(m)
]

)

+ log

(

1− exp
[

− (n− j + 1)

M
∑

m=1

αkj(m)
]

)

. (13)

Proposition 1: The function ℓ(αkj) is a difference of convex

(d.c.) functions.

A. Parameter Estimation in the M4

We now employ the CCCP which is a popular technique to

obtain solutions to the difference of convex functions given

in (13) [16]. CCCP converts such a function to a sequence

of convex functions and iteratively solves the original opti-

mization problem by obtaining the optima to the intermediate

convex functions. In the p-th iteration, we construct a convex

majorizing function Q(αkj ;α
(p)
kj ), such that the (p + 1)-st

iterate of αkj is given by

α
(p+1)
kj = argmax

αkj∈R
M
+

Q(αkj ;α
(p)
kj ), (14)

and Q(αkj ;α
(p)
kj ) , f(αkj) − α

T
kj∇αkj

g(α
(p)
kj ),

Q(αkj ;α
(p)
kj ) ≥ ℓ(αkj) and Q(α

(p)
kj ;α

(p)
kj ) = ℓ(α

(p)
kj ).

We compute the majorizing function Q(αkj ;α
(p)
kj ) as

Q(αkj ;α
(p)
kj ) = α

T
kjvm(k)− c

(p)
kj

M
∑

m=1

αkj(m)

− log

(

1− exp
[

−

M
∑

m=1

αkj(m)
]

)

, (15)

where c
(p)
kj is given by

c
(p)
kj = −

(n− j + 1) exp[−(n− j + 1)
∑M

m=1 αkj(m)(p)]

1− exp(−(n− j + 1)
∑M

m=1 αkj(m)(p)]
.

(16)

Hence, the CCCP procedure leads to an affine approximation

g(αkj) about α
(p)
kj , and linearly combines it with the convex

function f(αkj) resulting in a convex majorizing function

αkj 7→ Q(αkj ;α
(p)
kj ). To estimate zk and θj from αkj for

k ∈ [K] and j ∈ [n− 1], we use the biconvexity property [17]

of Q(αkj ;α
(p)
kj ).

Proposition 2: The function (zk, θj) 7→ Q(αkj ;α
(p)
kj ) is

biconvex in zk and θj . The feasible set Θ×Z is also biconvex.

In a non-linear biconvex optimization setting, the alternate

convex search (ACS) algorithm [17] is usually employed.

Here, the set of unknown variables are divided into disjoint

sub-blocks. In every iteration, only one sub-block is optimized

while the other sub-block is held fixed [17]. Since fixing one

of the sub-blocks results in a convex sub-problem, efficient

algorithms can be used to solve biconvex programs.

In the context of M4, the convex sub-problem for optimizing

zk with θj = θ
(p)
j is given by

z
(p+1)
k = argmin

zk∈R
M
+

n−1
∑

j=1

Qθ

j (zk), (17)

where Qθ

j (zk) = zTk diag(θ
(p)
j )vj(k) − log

(

1 −

exp(−zTk θ
(p)
j )
)

− c
(p)
kj z

T
k θ

(p)
j . Note that the optimization

problem in (17) cannot be solved in closed form. However,

the finite-sum property allows us to employ the stochastic

gradient descent (SGD) technique to obtain z
(p+1)
k [18].

Using the SGD approach, the j-th (where j ∈ [n− 1]) update

for zk is

z
(p+

j+1
n−1 )

k , z
(p+

j
n−1 )

k − ηzk∇zkQ
θ

j

(

z
(p+

j
n−1 )

k

)

, (18)

where ηzk is a learning rate parameter. Here,

∇zkQ
θ

j

(

z
(p+

j
n−1 )

k

)

is given by

∇zkQ
θ

j

(

zk

)

= diag(θ
(p)
j )vj(k)−

θ
(p)
j exp(−zTk θ

(p))

1 − exp(−zTk θ
(p))

(19)

Similarly, for the convex sub-problem in θj with zk = z
(p)
k we

follow the steps as outlined above and obtain the k-th update

for θj as

θ
(p+

k+1
K )

j , θ
(p+

k
K )

j − ηθj
∇θj

Qz
k

(

θ
(p+

k
K )

j

)

, (20)

where ηθj
is the learning rate and k ∈ [K]. Here

∇θj
Qz

k

(

θ
(p+

k
K )

j

)

can be computed as

∇θj
Qz

k

(

θj

)

= diag(z
(p)
k )vj(k)−

z
(p)
k exp(−θ

T
j z

(p)
k )

1− exp(−θT
j z

(p)
k )

(21)

It is known that SGD converges to a local minimizer of the

original objective [19].

B. Estimation of Consensus Rankings

In this section, we consider the problem of estimating the

consensus rankings πm0 for m ∈ [M ]. This is a well-known

combinatorial optimization problem and several heuristics

have been proposed to solve it approximately [5]. In the

context of M4, the optimization problem is

(π̂10, . . . , π̂M0) = argmin
[π10,...,πM0]∈ΩM

K
∑

k=1

M
∑

m=1

zk(m)θT
mvm(k),

(22)

where vm(k) is a function of πm0 for all m, as given in

(3). We propose a greedy approach for joint estimation of the

consensus ranking, z and θ, along the lines of the algorithms

proposed in [7]. Consider the M matrices Q(1), . . . ,Q(M),

where the m-th matrix is obtained from a homogeneous

population with consensus ranking πm0 as follows:

Q
(m)
jl (πKm

) =
1

Km

Km
∑

k=1

1{j ≺πk
l}. (23)

That is, Q
(m)
jl (πKm

) is the empirical probability that j pre-

cedes l in the sample πKm
, where the sample consists of Km

permutations from the m-th component distribution. The mean

of vm1 under the sampling distribution is given by

v̄m1 =
∑

j:j 6=r

Q
(m)
jr , whenever π−1

m0(1) = r, (24)

and hence, π−1
m0(1) = argminr

∑

j 6=r Q
(m)
jr .

A tree-based search algorithm is derived by extending the

above idea to all j. The n! nodes of the tree represent

partial orderings of πm0 given by ρmj = (rm1, . . . , rmj),



i.e., each node has n − j children. Hence, a particular level

j of the search tree corresponds to the j-th position in the

sample permutation, where j ∈ [n − 1]. Further, any path of

length n through the tree starting from the root represents a

permutation. Given a consensus ranking πm0, and associated

parameters of the model θm = [θm1, . . . , θm(n−1)], the cost

at node ρmj is given by

Cm(rm1, . . . , rmj) =

j
∑

l=1

z(m)θmjVml(rm1, . . . , rml), (25)

where Vml(rm1, . . . , rml) =
∑

l/∈{rm1,...,rmj}
Q

(m)
lrmj

. The

proposed algorithm chooses the permutation that leads to

smallest cost at each level j. Under the sampling distribu-

tion, the mean of
∑K

k=1

∑M
m=1 zk(m)θT

mvm(k) is given by
∑

j 6=r z(m1)Q
(m1)
jr + z(m2)Q

(m2)
jr , where z(m1) and z(m2)

are the weights of the samples from the multiplicative mix-

ture distribution consisting of m1 and m2 component dis-

tributions. We employ the mean as a proxy for the term
∑K

k=1

∑M
m=1 zk(m)θT

mvm(k) in (18) and (20). Further, vmj

in (18) and (20) can be replaced by Q
(m1)
jr , where the index

r is obtained by minimizing the cost at the j-th level.

The steps of the proposed M4-SEARCHPI algorithm are

given in Algorithm 2. Note that the per-sample weights zk are

updated for j SGD iterations at the j-th level. The computation

of A is described in [7].

Algorithm 1 M4-SEARCHPI

Require: Obtain (π10, . . . , πM0, θ, z) from (Q(1), . . . ,Q(M)).

Input: Q(1), . . . ,Q(M) , pmax.

Output: π10, . . . , πM0, θ and z.

1: Initialization θ
(0)
mj(m) for all m, j, z

(0)
k

(m) = 1/M for all m, k.

2: Compute V̄ =
∑

j 6=r

∑M
m=1 z(m)Q

(m)
jr .

3: while |ρmj | < n ∀ m do

4: for m = 1 : M do

5: for rm(j+1) ∈ [n]\ρmj do

6: Create node ρ′ = [ρmj , rm(j+1)], Vm(j+1)(ρ
′) =

∑
l∈[n]\ρ′ Q

(m)
lrj+1

.

7: end for

8: end for

9: while p ≤ pmax do

10: j = |ρ′|, p = p + 1.

11: Solve (18) using V̄ , with a fixed θ
(p)
j and (20) using V̄ , with a fixed z

(p)
k

.

12: end while

13: for m = 1 : M do

14: Compute Cm(ρ′) and Lm(ρ′) = Cm(ρ′) + A and set ρm(j+1) =
argminρ∈Sm

Lm(ρ).

15: end for

16: end while

V. NUMERICAL EXPERIMENTS

In this section, we numerically demonstrate the goodness-

of-fit of the M4 using the popular American Psychological

Association (APA) [20] and Sushi datasets [21]. We also

demonstrate the permutation learning capability of the infer-

ence algorithms proposed in Secs. IV on synthetic datasets.

A. Goodness-of-fit: APA and Sushi Dataset

In this section, we use the M4 to model the real-world APA

presidential election dataset [20] and the Sushi dataset [21].

Our goal is to highlight the advantages of M4 as compared

to the homogeneous Mallows model [22] and the additive

M4 M = 1 M = 2 M = 3

BIC −5.48 −1.17 −1.21
ICL - −0.77 −0.823

Additive M = 1 M = 2 M = 3
BIC −5.48 −2.10 −2.75
ICL - −1.71 −2.12

Table I
APA DATASET: BIC AND ICL (VALUES TO BE MULTIPLIED BY 104 )

mixture Mallows model [8], [9]. For both datasets, we use

the BIC and ICL [12] as measures of the goodness-of-fit. The

BIC is defined as

BIC(G) = 2ℓG(z, θ)− vG log(K), (26)

where ℓG(z, θ) represents the log likelihood under the model

G and vG represents the number of free parameters in G. The

ICL is used to measure the separation of the mixture com-

ponents and is a popular criterion for clustering applications.

The ICL is defined as

ICL(G) = BIC(G)− 2

K
∑

k=1

Entropy(zk), (27)

where Entropy(zk) = −
∑M

m=1 zk(m) log(zk(m)).

1) APA Dataset: The 1980, the APA presidential election

consisted of five candidates (A,B,C,D,E) and voters were

asked to rank the candidates in their order of preference.

Among the 15449 votes that were cast, 5738 voters ranked

all five candidates [20]. We demonstrate the goodness-of-fit of

the M4 for permutation-based observations using the 5738 per-

mutations. We simulate the additive mixture Mallows model

using the EM algorithm for comparison. Note that the number

of free parameters in the M4 is given by M(n − 1) + 2
(

M
2

)

.

Using the BIC and ICL we declare the model with the largest

values as the best model.

Using the M-M based inference algorithm, we fit the M4

to this dataset, and computed the per-sample weights and the

parameters, for M = 2 and M = 3. We also ran the EM

algorithm to learn the additive mixture Mallows model [8], [9]

and the homogeneous Mallows model [7] (with M = 1). It

can be seen from Tables I that for both M = 2 and M = 3, M4

provides a better fit compared to the additive mixture model

in both the complete and partial rankings scenarios. When

M = 3, we obtain a lower value of BIC and ICL indicating

that a 3 component model is better suited for this dataset.

2) Sushi Dataset: We now fit the M4 to the popular Sushi

dataset. This dataset compares 10 types of Sushi. The data was

collected by surveying 5000 individuals living in Japan about

their preferences regarding the Sushi variants [21].

From the Condorcet ranking [23] we know that Fatty tuna is

a common favorite and is ranked highest, while cucumber roll

is the least liked. However, there is a divided opinion about sea

urchin as 15-20% of the voters rank it as their most favourite

or their least favourite item, hinting that this dataset is suited

for mixture modelling.

The global search for the candidate permutation that leads

to the smallest value of BIC is infeasible as the number

of possible permutation choices is too large. We pick a



M = 1 M = 2 M = 3

M4 (BIC) −1.487 −0.274 −0.226
M4 (ICL) −1.487 −0.205 −0.184

Table II
SUSHI DATASET: BIC AND ICL (VALUES TO BE MULTIPLIED BY 104)

small subset of permutations that consists of the Condorcet

permutation and permutations that capture the voters’ divided

opinion on Sea Urchin. We obtain the BIC values for the

subset of permutations as given in Table II. In the case of

the Sushi dataset, the EM algorithm for additive mixture

density necessitates a weighted sum over 10! permutations,

which is infeasible [9]. However, we are able to model the

heterogeneous population using M4, hence substantiating our

claim that the inference framework for the M4 is indeed

computationally simple.

B. Consensus Ranking Estimation Performance

In this section, we demonstrate consensus ranking recovery

performance of the proposed inference algorithms. We gen-

erated a synthetic dataset with n = 8 using Gibbs sampling.

The consensus ranking was chosen randomly, ensuring that

the distance between permutation is sufficiently large [24].

The experiments are repeated over 100 trials. In all our

experiments, we set ηθ ∝ i−β , where i is the iteration number

of the SGD algorithm and β = 2. We display the success rates

of the proposed algorithm, where success rate refers to the

average number of times the algorithm recovers the consensus

ranking perfectly (π̂m0 = πm0) for M = 1, 2, 4. We observe

that as K increases, the success rate also increases. Finally,

as M increases, the success rate decreases as there are more

parameters to estimate.
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Figure 1. Plot of the success rates of the M4-SEARCHPI algorithm.

VI. FUTURE WORK

There are a couple of natural extensions of the present work.

1) First, it is known that tensor decomposition methods [24]

have had tremendous success in disambiguating mixtures

and latent variable models. Adapting such tensor methods

to the M4 is a fruitful research direction.

2) A promising area of research consists in establishing

the fundamental tradeoff between the number of samples

and the probability of error in learning the consensus

rankings.
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