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Abstract—We employ the Gaussian Poincaré inequality for
two tasks in the Shannon theory. First, we show that the
Gaussian broadcast channel admits a strong converse. Second,
we demonstrate that the empirical output distribution of a
delay-limited code for the AWGN channel with quasi-static
fading and with non-vanishing probability of error converges
to the maximum mutual information output distribution (in the
normalized relative entropy sense).

I. INTRODUCTION

The Poincaré inequality for Gaussian measures [1] is one
of the most prominent results in the theory of concentration
of measure. Roughly speaking, it states that if f : Rn → R
is a smooth function and φ(x) = 1√

2π
e−x

2/2 is the standard
Gaussian density, then the variance of f can be bounded in
terms of the expectation of the squared derivative of f , i.e.,

Varφ[f ] ≤ Eφ[‖∇f‖2]. (1)

In the present work, we employ a modification of the Gaussian
Poincaré inequality for two tasks in Shannon theory. These are
described briefly in the following sections.

II. GAUSSIAN BROADCAST CHANNELS

The Gaussian broadcast channel [2, Ch. 5] is a basic model
for the downlink of a communication system. Two messages
W1 ∈ [2nR1 ] and W2 ∈ [2nR2 ] are to be encoded into
a codeword Xn = f (n)(W1,W2). This codeword is power
constrained, i.e., ‖Xn‖22 ≤ nP . It is transmitted through two
AWGN channels with variances σ2

1 and σ2
2 respectively, i.e.,

Y n1 = Xn + Zn1 , and Y n2 = Xn + Zn2 . (2)

Decoder j, which observes Y nj , is required to estimate message
Wj where j = 1, 2. The average probability of error is defined
to be Pr((Ŵ1, Ŵ2) 6= (W1,W2)) where Ŵj is decoder j’s
estimate of Wj . The capacity region CBC is well known and
is given by

CBC =
⋃

α∈[0,1]

(R1, R2) ∈ R2
+

∣∣∣∣∣∣
R1 ≤ C

(
αP
σ2
1

)
R2 ≤ C

(
(1−α)P
αP+σ2

2

)
 , (3)

where C(x) := 1
2 log(1 + x). This region is achieved using

superposition coding [3]. Recall that the capacity region is the
set of all rate pairs for which the error probability vanishes.

The central question of our investigation in [4] is whether
the region in (3) is enlarged if we relax the condition that the
error probability vanishes. We allow the error probability to
be upper bounded by a non-vanishing constant ε ∈ (0, 1). We
show that the ε-capacity region is precisely the region in (3).
The main technicality in the proof involves bounding a certain
variance of the log-likelihood of the messages using (1).

III. GOOD DELAY-LIMITED CODES

In [5], we used (1) to investigate quasi-static fading channels
[6, Sec. 5.4.1] where the fading coefficient H is random but
remains constant during the course of transmission. We are
interested in the so-called delay-limited capacity [7], which
is the maximum achievable rate under the assumption that the
maximal error probability over all non-zero fading coefficients
vanishes as the blocklength grows.

We adopt a long-term power constraint [8] and the max-
over-messages error criterion for delay-limited decoding. It is
known (e.g., [7, Sec. III-B]) that the delay-limited capacity is
C(PDL) where PDL := P

E[1/H] . We show in [5] that for any
sequence of codes that is capacity-achieving and whose error
probability is upper bounded by some ε ∈ [0, 1) is such that
sequence of induced output distributions {pY n}∞n=1 satisfies

lim
n→∞

1

n
D(pY n‖pnY ∗) = 0 (4)

where pY ∗(y) = N (y; 0, 1 + PDL).
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