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Abstract—We study the second-order asymptotics of informa-
tion transmission using random Gaussian codebooks and nearest
neighbor (NN) decoding over a power-limited additive stationary
memoryless non-Gaussian channel. We show that the dispersion
term depends on the non-Gaussian noise only through its second
and fourth moments. We also characterize the second-order
performance of point-to-point codes over Gaussian interference
networks. Specifically, we assume that each user’s codebook is
Gaussian and that NN decoding is employed, i.e., that interference
from unintended users is treated as noise at each decoder.

I. SYSTEM MODEL

Consider the point-to-point additive-noise channel

Y n = Xn + Zn, (1)

where Xn is the input and Zn is the noise over n scalar
channel uses. Throughout, we shall focus exclusively on
Gaussian codebooks. More precisely, we consider shell codes
for which Xn is uniformly distributed on the sphere

Xn ∼ f
(shell)
Xn (x) := δ(‖x‖2 − nP )/Sn(

√
nP ). (2)

Here, δ(·) is the Dirac delta and Sn(r) = 2πn/2rn−1/Γ(n/2)
is the surface area of a radius-r sphere in Rn. The noise
Zn is assumed to be a stationary and memoryless process
that does not depend on the channel input: Zn ∼ PZn(z) =∏n

i=1 PZ(zi). The distribution PZ is non-Gaussian; the only
assumptions are:

E[Z2] = 1, ξ := E[Z4] <∞, E[Z6] <∞. (3)

Given a shell code consisting of M ∈ N random codewords
C := {Xn(1), . . . , Xn(M)}, we consider an nearest neighbor
decoder that returns the message Ŵ whose corresponding
codeword is closest in Euclidean distance to Y n, i.e.,

Ŵ := arg min
w∈[1:M ]

‖Y n −Xn(w)‖. (4)

This decoder is optimal if the noise is Gaussian, but may not
be so in the more general setup considered here.

We define the average probability of error as p̄e,n :=
Pr[Ŵ 6= W ]. This probability is averaged over the uniformly
distributed message W , the random codebook C and the
channel noise Zn. Note that in traditional channel-coding
analyses [1], [2], the probability of error is averaged only over
W and Zn. Similar to [3], the additional averaging over the

codebook C is required here to establish an ensemble converse
for the class of Gaussian codebooks considered in this paper.

Let M∗shell(n, ε, P ; PZ) be the maximum number of mes-
sages that can be transmitted using a shell codebook over
the channel (1) with average error probability no larger than
ε ∈ (0, 1), when the noise is distributed according to PZ

Lapidoth [3] showed that for all ε ∈ (0, 1),

lim
n→∞

1

n
logM∗shell(n, ε, P ; PZ) = C(P ). (5)

independent of PZ .
In Theorem 1 below, we provide the second-order term in

the asymptotic expansion of logM∗shell(n, ε, P ; PZ).

Theorem 1. Consider a noise distribution with statistics as
in (3). For shell codes,

logM∗shell(n, ε, P ; PZ)

= nC(P )−
√
nVshell(P, ξ)Q

−1(ε) +O(log n), (6)

where the shell dispersion is

Vshell(P, ξ) :=
(
P 2(ξ − 1) + 4P

)
/
(
4(P + 1)2

)
. (7)

The proof together with an extension to Gaussian interfer-
ence networks can be found in [4]. One of the main tools
in our second-order analysis is the Berry-Esseen theorem
for functions of random vectors (see, e.g., [5, Prop. 1]).
The second-order term in the asymptotic expansions of
logM∗shell(n, ε, P ; PZ) depends on the distribution PZ only
through its second and fourth moments. If Z is standard
Gaussian, then the fourth moment ξ = 3 and we recover
from (7) the Gaussian dispersion [2, Eq. (293)]. Comparing (7)
with [2, Eq. (293)] we see that noise distributions PZ with
higher fourth moments than Gaussian (e.g., Laplace) result in
a slower convergence to C(P ).
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