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Graphical Models: Introduction

Graph G = (V,E) represents a multivariate prob. distribution of a
random vector X = (X1, . . . ,Xd) indexed by V = {1, . . . , d}
Node i ∈ V corresponds to random variable Xi

Edge set E corresponds to conditional independencies

Graphical Models: Introduction

Graph structure G = (V,E) in the multivariate distribution of random
variables, with V = {1, . . . ,m}.
Nodes i ∈ V correspond to random variable Xi.

Edges E correspond to conditional independence relationships.
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High Dimensional Learning of Graphical Models

Given k training samples xk := {x1, . . . , xk} drawn from a graphical
model P, Markov on Gn = (V,E) (graph with n nodes)

Information about model class (e.g., Gaussian, discrete, Ising....)

Would like an estimate Ĝn = Ĝn(xk) that is consistent

Definition: Structural Consistency

lim
k,n→∞

k=O(f (n))

Pr
(

Ĝn(xk) 6= Gn

)
= 0

Desideratum 1: k is grows very slowly with n

Desideratum 2: Low computational complexity

Motivation: High-dimensional data (microarray, social networks)
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Ĝn(xk) 6= Gn

)
= 0

Desideratum 1: k is grows very slowly with n

Desideratum 2: Low computational complexity

Motivation: High-dimensional data (microarray, social networks)

4/18 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011 4 / 18



High Dimensional Learning of Graphical Models

Given k training samples xk := {x1, . . . , xk} drawn from a graphical
model P, Markov on Gn = (V,E) (graph with n nodes)

Information about model class (e.g., Gaussian, discrete, Ising....)
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Related Work on Learning Graphical Models

Efficient Algorithms for Structure Learning

ML for trees: Max-weight spanning tree (Chow & Liu 68)

Error exponents (T., Anandkumar, Tong, Willsky IT-’11)
Forest models (T., Anandkumar, Willsky JMLR-’11)
Latent models (Choi, T., Anandkumar, Willsky JMLR-’11)

Hardness: NP hard to learn non-trees (Karger & Srebro ’01)

Difficulty: Correlation decay necessary (Bento & Montanari ’10)

Conditional independence tests for bounded degree graphs
(Abbeel et al. ’06, Bresler et al. ’09)

Convex optimization: `1 regularization (Dudik et al. ’04, Lee et al.
’06, Meinshausen & Buehlmann ’06, Ravikumar et al. ’10)

Information-theoretic lower bounds (Santhanam & Wainwright ’08)

5/18 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011 5 / 18



Related Work on Learning Graphical Models

Efficient Algorithms for Structure Learning

ML for trees: Max-weight spanning tree (Chow & Liu 68)

Error exponents (T., Anandkumar, Tong, Willsky IT-’11)
Forest models (T., Anandkumar, Willsky JMLR-’11)
Latent models (Choi, T., Anandkumar, Willsky JMLR-’11)

Hardness: NP hard to learn non-trees (Karger & Srebro ’01)

Difficulty: Correlation decay necessary (Bento & Montanari ’10)

Conditional independence tests for bounded degree graphs
(Abbeel et al. ’06, Bresler et al. ’09)

Convex optimization: `1 regularization (Dudik et al. ’04, Lee et al.
’06, Meinshausen & Buehlmann ’06, Ravikumar et al. ’10)

Information-theoretic lower bounds (Santhanam & Wainwright ’08)

5/18 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011 5 / 18



Related Work on Learning Graphical Models

Efficient Algorithms for Structure Learning

ML for trees: Max-weight spanning tree (Chow & Liu 68)

Error exponents (T., Anandkumar, Tong, Willsky IT-’11)
Forest models (T., Anandkumar, Willsky JMLR-’11)
Latent models (Choi, T., Anandkumar, Willsky JMLR-’11)

Hardness: NP hard to learn non-trees (Karger & Srebro ’01)

Difficulty: Correlation decay necessary (Bento & Montanari ’10)

Conditional independence tests for bounded degree graphs
(Abbeel et al. ’06, Bresler et al. ’09)

Convex optimization: `1 regularization (Dudik et al. ’04, Lee et al.
’06, Meinshausen & Buehlmann ’06, Ravikumar et al. ’10)

Information-theoretic lower bounds (Santhanam & Wainwright ’08)

5/18 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011 5 / 18



This Talk: Learning Random Graphical Models

We consider the case where the underlying graph G is random

Relax the assumption that graph comes from a particular set

“Real-world” networks can be modeled by random graphs

Our work is a first-step in understanding the fundamental limits in
learning random graphical models

Ising model

Markov on Erdős-Rényi
ensemble Gn ∼ G(n, c

n)
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Crisis = Danger + Opportunity

Why difficult or dangerous?

Random graphs consists of some nodes that
have large degrees

Existing algorithms may not be consistent
because they typically assume the max
degree grows slowly.

rr
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r
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@
@
@
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�
�

Saving grace(s)...

Gn ∼ G(n, c
n) is locally tree-like

Correlation decay: Influences of “faraway” nodes on node i are
negligible, model behaves locally as a tree distribution

Tree-based algorithms (Chow-Liu, Thresholding) may work
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Setup: Ising Models on Random Graphs

We have k vector valued samples xk. Each sample in {±1}n

Graph is drawn from the Erdős-Rényi ensemble, i.e., Gn ∼ G(n, c
n)

Each edge in Gn has an appearance probability of c
n , independent

of all other edges

Ising model on G = (V,E):

P(x|G) ∝ exp


 ∑

(i,j)∈E

Ji,jxixj


 , x ∈ {±1}n

Assumptions:
Ferromagnetism: Ji,j ∈ [Jmin, Jmax] ⊂ (0,∞) for all (i, j) ∈ E

Correlation Decay:
c tanh(Jmax) < 1
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A Strong Converse

Converse result: Lower bound on sample complexity

Any algorithm fails if number of samples k does not exceed the
prescribed lower bound.

Recall that Gn ∼ G(n, c
n)

Assume that c ≤ n/2, i.e., graph does not need to be sparse

Theorem (Converse)
There exists an ε > 0 such that if

k ≤ εc log n,

then,
lim

k,n→∞
Pr
(

Ĝn(xk) 6= Gn

)
= 1

for any estimator Ĝn( · ).
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Proof Idea for the Strong Converse

Moral of the story: Need k = Ω(c log n) samples for consistent recovery

Follows closely the converse technique in Bresler et al. ’09.

Main modification: Underlying graph not deterministic so counting
argument needs to be modified

Focus on graphs “with the highest likelihoods”

Note from
k ≤ εc log n,

that number of samples k is required to grow linearly with the
average degree c
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Correlation Thresholding

Intuition: Edges with strong correlations should be included in the
model

Compute for each pair of variables u, v ∈ V, the empirical
correlation

Ĉk
u,v :=

1
k

k∑

i=1

x(i)
u x(i)

v

Set (u, v) ∈ Ĝn iff
Ĉk

u,v ≥ δ(Jmin, Jmax)
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Correlation Thresholding: Theoretical Properties

Assume correlation decay: c tanh Jmax < 1 (c constant)

Assume homogeneity: 2 tanh2 Jmax < tanh Jmin

Theorem (Structural Consistency of CorrThres)
For a.e. graph Gn, we have

lim
k,n→∞

k=Ω(log n)

Pr
(

CorrThres({Ĉk
u,v}(u,v)∈V2 ; δ); 6= Gn

)
= 0
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Correlation Thresholding: Why / How does it work?

Correlations are higher on edges than non-edges for nearly
homogeneous Ising models on G(n, c

n)

Self-avoiding walk tree (SAW) construction
STRUCTURE LEARNING OF ISING MODELS ON RANDOM GRAPHS 25

j

k1 k2 k3 k4

i

(a) A graph

j1 j2 j3

k1 k2 k3 k4

A

U(j)

Ũ(j, a)

i

(b) Its Self-Avoiding Walk Tree

Fig 1. The figure on the right is self-avoiding walk tree T
(i,G)
saw rooted at node i for the graph

shown in the left. The dotted line represents a long path with a large number of nodes. The
copies of node j in the self-avoiding walk tree is U(j; T (i,G)

saw ) = {j1, j2, j3}. The subset

of copies of the node j in T
(i,G)
saw of distance less than a = 4 is Ũ(j, a;T (i,G)

saw ) = {j1, j2},
defined in (47). Set A is the set of terminal nodes in T

(i,G)
saw .

denote the set of copies of node j in the self-avoiding walk tree T
(i,G)
saw . The

definition is extended to sets A ⊂ V as U(A;T (i,G)
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We now have the result on bounds on the pairwise correlations.
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using large deviations
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Separation Property

Fact: For sets A,B, S ∈ V, if S separates A,B, then

I(XA; XB|XS) = 0

The global Markov property.

Main Idea: Conditional Mutual Information

Separators in Graphical Models

i

j
S

Xi ⊥⊥ Xj |XS ⇐⇒ I(Xi;Xj |XS) = 0

Challenges

Structure learning through conditional mutual information testing

Large separator sets in general graphs

Anima Anandkumar (UCI) Ising Models 01/13/2011 23 / 35

S separates i and j.
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Conditional Mutual Information Thresholding

Compute the empirical conditional mutual information; if small, we
may have found a candidate separator

What should be the cardinality of the conditioning set? Roughly 2!

Rule: (i, j) ∈ Ĝn if and only if

min
S⊂V\{i,j},|S|≤2

Î(Xi,Xj|XS) ≤ τk,n

τk,n is the threshold

Depends on number of variables n and sample size k

15/18 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011 15 / 18



Conditional Mutual Information Thresholding

Compute the empirical conditional mutual information; if small, we
may have found a candidate separator

What should be the cardinality of the conditioning set?

Roughly 2!

Rule: (i, j) ∈ Ĝn if and only if
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Conditional Mutual Information Thresholding

Again assume correlation decay condition: c tanh Jmax < 1

Theorem (Structural Consistency of CMIT)
For a.e. graph Gn, we have

lim
k,n→∞

k=ω(log n)

Pr
(
CMIT(xk; τk,n); 6= Gn

)
= 0
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Conditional MI Thresholding: Why / How does it work?

Challenge: Separators in graphical models may be large, i.e.,

Î(Xi; Xj|XS) = f (P̂i,j,S)

depends on the type over many variables

Approximate separation?

In such random graphical models, the size of an approximate
separator is ≤ 2 asymptotically

Proof Ideas Contd.

Approximate Separator Sets

Subset of separator on short paths.

Bound on Approx. Separator Set

In random graphs, size of
separator is at most two
asymptotically

Short cycles do not overlap in
random graphs

i

j

S

Anima Anandkumar (UCI) Ising Models 01/13/2011 24 / 35

Ignore effects of long paths separating i and j
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Conclusion

Proposed a framework for learning random graphical models

Necessary condition on sample complexity

k = Ω(c log n)

Tractable, simple algorithms with provable theoretical properties

CorrThres : k = Ω(log n)

CMIT : k = ω(log n)

http://arxiv.org/abs/1011.0129
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