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Graphical Models: Introduction

@ Graph G = (V, E) represents a multivariate prob. distribution of a
random vector X = (X1,...,Xy) indexed by V = {1,...,d}

@ Node i € V corresponds to random variable X;

@ Edge set E corresponds to conditional independencies
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@ Edge set E corresponds to conditional independencies
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High Dimensional Learning of Graphical Models

@ Given £ training samples x* := {xi,...,x;} drawn from a graphical
model P, Markov on G, = (V, E) (graph with » nodes)

@ Information about model class (e.g., Gaussian, discrete, Ising....)

@ Would like an estimate G, = G, (x) that is consistent
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High Dimensional Learning of Graphical Models

@ Given £ training samples x* := {xi,...,x;} drawn from a graphical
model P, Markov on G, = (V, E) (graph with » nodes)

@ Information about model class (e.g., Gaussian, discrete, Ising....)

@ Would like an estimate G, = G, (x) that is consistent

Definition: Structural Consistency

lim Pr( (X )#(})

k,n—00

k=0(f(n))

@ Desideratum 1: k is grows very slowly with n
@ Desideratum 2: Low computational complexity

@ Motivation: High-dimensional data (microarray, social networks)
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Related Work on Learning Graphical Models

Efficient Algorithms for Structure Learning

@ ML for trees: Max-weight spanning tree (Chow & Liu 68)

e Error exponents (T., Anandkumar, Tong, Willsky IT-"11)
o Forest models (T., Anandkumar, Willsky JMLR-11)
e Latent models (Choi, T., Anandkumar, Willsky JMLR-"11)
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e Error exponents (T., Anandkumar, Tong, Willsky IT-"11)
o Forest models (T., Anandkumar, Willsky JMLR-11)
e Latent models (Choi, T., Anandkumar, Willsky JMLR-"11)

@ Hardness: NP hard to learn non-trees (Karger & Srebro '01)
@ Difficulty: Correlation decay necessary (Bento & Montanari ’10)

@ Conditional independence tests for bounded degree graphs
(Abbeel et al. ’06, Bresler et al. ’09)

@ Convex optimization: ¢, regularization (Dudik et al. ‘04, Lee et al.
'06, Meinshausen & Buehlmann 06, Ravikumar et al. '10)

@ Information-theoretic lower bounds (Santhanam & Wainwright '08)
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@ We consider the case where the underlying graph G is random
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This Talk: Learning Random Graphical Models

@ We consider the case where the underlying graph G is random
@ Relax the assumption that graph comes from a particular set
@ “Real-world” networks can be modeled by random graphs

@ Our work is a first-step in understanding the fundamental limits in
learning random graphical models

@ Ising model

@ Markov on Erdds-Rényi
ensemble G, ~ G(n, 1)

ITA 2011
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Crisis = Danger + Opportunity

Why difficult or dangerous?

@ Random graphs consists of some nodes that
have large degrees

@ Existing algorithms may not be consistent >‘<
because they typically assume the max
degree grows slowly.
Saving grace(s)...
® G, ~G(n,<)is locally tree-like

@ Correlation decay: Influences of “faraway” nodes on node i are
negligible, model behaves locally as a tree distribution

@ Tree-based algorithms (Chow-Liu, Thresholding) may work
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Setup: Ising Models on Random Graphs

@ We have k vector valued samples x*. Each sample in {41}"
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@ Ising model on G = (V,E):
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Setup: Ising Models on Random Graphs

@ We have k vector valued samples x*. Each sample in {41}"
@ Graph is drawn from the Erdds-Rényi ensemble, i.e., G, ~ G(n, 1)

@ Each edge in G, has an appearance probability of 1, independent
of all other edges

@ Ising model on G = (V,E):

P(x|G) o exp ( Z de,xj) , x € {£1}"
(

ij)EE
Assumptions:
@ Ferromagnetism: J;; € [Jmin, Jmax] C (0, 00) for all (i,j) € E

@ Correlation Decay:
ctanh(Jpax) < 1
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A Strong Converse

@ Converse result: Lower bound on sample complexity

@ Any algorithm fails if number of samples k does not exceed the
prescribed lower bound.
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A Strong Converse

@ Converse result: Lower bound on sample complexity

@ Any algorithm fails if number of samples k does not exceed the
prescribed lower bound.

@ Recall that G, ~ G(n, €)

@ Assume that ¢ < /2, i.e., graph does not need to be sparse

Theorem (Converse)
There exists an € > 0 such that if

k < eclogn,
then,

lim Pr (Gn(xk) ) Gn) —

k,n—00

for any estimator G, - ).
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Proof Idea for the Strong Converse

Moral of the story: Need k = (clogn) samples for consistent recovery
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Moral of the story: Need k = (clogn) samples for consistent recovery
@ Follows closely the converse technique in Bresler et al. *09.

@ Main modification: Underlying graph not deterministic so counting
argument needs to be modified
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Proof Idea for the Strong Converse

Moral of the story: Need k = (clogn) samples for consistent recovery
@ Follows closely the converse technique in Bresler et al. *09.

@ Main modification: Underlying graph not deterministic so counting
argument needs to be modified

@ Focus on graphs “with the highest likelihoods”

@ Note from
k < eclogn,

that number of samples « is required to grow linearly with the
average degree ¢
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Correlation Thresholding

@ Intuition: Edges with strong correlations should be included in the
model
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@ Compute for each pair of variables u,v € V, the empirical
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R 1 N
C;V = x Z;XL(;)X\(;I)
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Correlation Thresholding

@ Intuition: Edges with strong correlations should be included in the
model

@ Compute for each pair of variables u,v € V, the empirical

correlation )
R 1 N
Cﬁ,v = E ZXL(tl)x\(zl)
i=1

@ Set (u,v) € G, iff )
C],( zé(Jmim]max)

u,v
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Correlation Thresholding: Theoretical Properties

@ Assume correlation decay: ctanh J,x < 1 (c constant)
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Correlation Thresholding: Theoretical Properties

@ Assume correlation decay: ctanh J,x < 1 (c constant)

@ Assume homogeneity: 2 tanh? Jpax < tanh Jmin

Theorem (Structural Consistency of CorrThres)
For a.e. graph G,,, we have

lim Pr <CorrThres({C’;v}(u vyev2; 0); # G,,) =0
k,n—00 ’ ’
k=Q(logn)
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Correlation Thresholding: Why / How does it work?

@ Correlations are higher on edges than non-edges for nearly
homogeneous Ising models on G(n, £)
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Correlation Thresholding: Why / How does it work?

@ Correlations are higher on edges than non-edges for nearly
homogeneous Ising models on G(n, £)

@ Self-avoiding walk tree (SAW) construction

@ Prove result for exact statistics; generalization to sample statistics
using large deviations

@ Can homogeneity assumption be removed?
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Separation Property

@ Fact: Forsets A, B, S € V, if S separates A, B, then
1(Xa; Xp|Xs) =0

The global Markov property.
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Separation Property

@ Fact: Forsets A, B, S € V, if S separates A, B, then
1(Xa; Xp|Xs) =0

The global Markov property.

Xi L Xj|Xs <= I(Xi; X;[Xs)=0

@ S separatesiandj.
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Conditional Mutual Information Thresholding

@ Compute the empirical conditional mutual information; if small, we
may have found a candidate separator
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Conditional Mutual Information Thresholding

@ Compute the empirical conditional mutual information; if small, we
may have found a candidate separator

@ What should be the cardinality of the conditioning set? Roughly 2!
@ Rule: (i,j) € G, if and only if

min  I(X;, X;|Xs) < Tin
SCV\{ijhls|<2

@ 7y, is the threshold

@ Depends on number of variables n and sample size k
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Conditional Mutual Information Thresholding

Again assume correlation decay condition: ¢ tanh Jyx < 1

16/18 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011 16/18



Conditional Mutual Information Thresholding

Again assume correlation decay condition: ¢ tanh Jyx < 1

Theorem (Structural Consistency of CMIT)
For a.e. graph G,,, we have

lim  Pr(CMIT(x*;7i); # Gu) =0
k,n—00
k=w(logn)
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Conditional Ml Thresholding: Why / How does it work?

@ Challenge: Separators in graphical models may be large, i.e.,
I(X;; X;|Xs) = f(Pijs)
depends on the type over many variables
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Conditional Ml Thresholding: Why / How does it work?

@ Challenge: Separators in graphical models may be large, i.e.,
I(X;; X;|Xs) = f(Pijs)
depends on the type over many variables

@ Approximate separation?

@ In such random graphical models, the size of an approximate
separator is < 2 asymptotically

@ Ignore effects of long paths separating i and,j
1718 Vincent Tan (UW-Madison) Learning Random Graphs ITA 2011
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Conclusion

@ Proposed a framework for learning random graphical models
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Conclusion

@ Proposed a framework for learning random graphical models
@ Necessary condition on sample complexity
k = Q(clogn)
@ Tractable, simple algorithms with provable theoretical properties
CorrThres : k = Q(logn)

CMIT : k = w(logn)

@ http://arxiv.org/abs/1011.0129
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