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Information Transmission

Shannon’s information theory:Shannon’s Figure 1
TRANSMITTER

MESSAGE

SIGNAL RECEIVED
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RECEIVER DESTINATION
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NOISE
SOURCE

INFORMATION
SOURCE

Shannon abstracted away information meaning, “semantics”
• treat all data equally — bits as a “universal currency”
• crucial abstraction for modern communication and computing systems

Also relaxed computation and delay constraints to discover a 
fundamental limit: capacity, providing a goal-post to work toward

Saturday, June 11, 2011

For a channel {p(y|x) : x ∈ X , y ∈ Y}, we can transmit information
with rates up to the capacity [Shannon (1948)]

C = max
P∈P(X )

I(X; Y)

“Feedback doesn’t increase capacity” [Shannon (1956)]
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AWGN Channel

At time i = 1, 2, . . . , n, the channel input and output are related by

Yi = gXi + Zi, Zi ∼ N (0, 1)

Send M messages encoded as codewords {Xn(m) : m = 1, . . . ,M}

Peak power constraint

1
n

n∑
i=1

X2
i (m) ≤ P, ∀m ∈ {1, . . . ,M}

Expected or Long-Term power constraint

1
M

M∑
m=1

(
1
n

n∑
i=1

X2
i (m)

)
≤ P.
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AWGN Channel : Non-Asymptotic Fundamental Limits

Let the channel gain g = 1 wlog.

The average probability of error is

P(n)
e := Pr(M̂ 6= M).

Define

M∗PP(n,P, ε) := max
{

M ∈ N : ∃ length-n code with

M codewords and P(n)
e ≤ ε under the PP constraint

}
Define

M∗LT(n,P, ε) := max
{

M ∈ N : ∃ length-n code with

M codewords and P(n)
e ≤ ε under the LT constraint

}
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First-Order Results

Let
C(x) :=

1
2

log(1 + x), nats per ch. use

If we demand that the avg error prob. vanishes [Shannon (1948)],

lim
ε↓0

lim
n→∞

1
n

log M∗PP(n,P, ε) = C(P),

lim
ε↓0

lim
n→∞

1
n

log M∗LT(n,P, ε) = C(P).

In n channel uses, can send up to nC(P) nats over p(y|x) reliably.
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First-Order Results

If we do not demand that the avg error prob. vanishes
[Yoshihara (1964), Polyanskiy-Poor-Verdú (2010)],

lim
n→∞

1
n

log M∗PP(n,P, ε) = C(P)

lim
n→∞

1
n

log M∗LT(n,P, ε) = C
( P

1− ε

)
, ∀ ε ∈ (0, 1).

The above limits are known as the ε-capacities

Since for peak-power, the ε-capacity does not depend on ε, the
strong converse holds

Since for long-term, the ε-capacity depends on ε, the strong
converse does not hold
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Strong Converse?

ε = lim
n→∞

P(n)
e , R = lim

n→∞

1
n

log M
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Higher-Order Results

More refined asymptotic expansions.

Third-order [Polyanskiy-Poor-Verdú (2010), T.-Tomamichel (2015)],

log M∗PP(n,P, ε) = nC(P) +
√

nV(P)Φ−1(ε) +
1
2

log n + O(1)

where the channel dispersion is

V(x) :=
x(x + 2)

2(x + 1)2 squared nats per ch. use

and
Φ(a) :=

∫ a

−∞

1√
2π

e−t2/2 dt.

Second-order [Yang-Caire-Durisi-Polyanskiy (2015)]

log M∗LT(n,P, ε) = nC
( P

1− ε

)
−
√

V
( P

1− ε

)√
n log n + o(

√
n).
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Feedback

Feedback helps to simplify coding schemes

Long-term power constraint under feedback

1
M

M∑
m=1

(
1
n

n∑
i=1

E
[
X2

i (m,Y i−1)
])
≤ P.

Non-asymptotic fundamental limit

M∗FB(n,P, ε) := max
{

M ∈ N : ∃ length-n code with

M codewords and P(n)
e ≤ ε under the LT-FB constraint

}
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Feedback : Existing Results

First-order [Shannon (1956)]

lim
ε↓0

lim
n→∞

1
n

log M∗FB(n,P, ε) = C(P).

Schalkwijk and Kailath (1966) demonstrated a simple coding
scheme based on estimation-theoretic ideas to show that

P(n)
e (R) ≤ 2 exp

(
−22n(C(P)−R)

2

)
, for R =

1
n

log M < C(P).

Error exponent is infinity

Suggests that the fixed-error results can also be drastically
improved
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AWGN Channels with Feedback : New Results

Theorem (Truong-Fong-T. (T-IT March 2017))

For the directpart,

log M∗FB(n,P, ε) ≥ nC
( P

1− ε

)
− log log n + O(1).

For the converse part

log M∗FB(n,P, ε) ≤ nC
( P

1− ε

)
+

√
V
( P

1− ε

)√
n log n + O(

√
n).

From these results, the ε-capacity is

lim
n→∞

1
n

log M∗FB(n,P, ε) = C
( P

1− ε

)
.

The − log log n can be replaced by −O(log . . . log︸ ︷︷ ︸
L times

n) for any L ∈ N.
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AWGN Channels with Feedback : Remarks

lim
n→∞

1
n

log M∗FB(n,P, ε) = C
( P

1− ε

)
.

Feedback doesn’t improve the first-order term since

lim
n→∞

1
n

log M∗LT(n,P, ε) = C
( P

1− ε

)

With feedback, second-order term is at least

−O(log log . . . log n).

This is a great improvement over without feedback where the
second-order term is [Yang-Caire-Durisi-Polyanskiy (2015)]

−
√

V
( P

1− ε

)√
n log n + o(

√
n).
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( P

1− ε

)
With feedback, second-order term is at least

−O(log log . . . log n).

This is a great improvement over without feedback where the
second-order term is [Yang-Caire-Durisi-Polyanskiy (2015)]

−
√

V
( P

1− ε

)√
n log n + o(

√
n).
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Proof Idea for the Direct Part

Partition msg set {1, . . . ,M} into A1 t A2.

A1: Send (0, 0, . . . , 0) ∈ Rn

A2: Schalkwijk-Kailath (1966) scheme M′ = |A2| ≈ (1− ε)M msg

P(n)
e (R′n | A2) ≤ n−1, where R′n := n−1 log M′.

Choose
log M′ = nC

( P
1− ε

)
− log log n + Oε(1)

where − log log n because of double exponential decay of P(n)
e (R)

By Gallager-Nakiboglŭ (2010) and Ihara (2012), the −O(log . . . log n)

term arises because P(n)
e (R) decays faster than any

multiple-exponential.

Hence,

P(n)
e = Pr(A1)P(n)

e (A1) + Pr(A2)P(n)
e (A2) ≤ ε · 1 + (1− ε)1

n
≈ ε.
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Proof Idea for the Converse Part

Convert expected long-term power to a peak-power code.

Key observation

∃ LT-FB code {Xi(·, ·)}n
i=1 with M msges and P(n)

e ≤ ε

=⇒ ∃ PP-FB code {X′i(·, ·)}n
i=1 with M msges and P(n)

e ≤ 1− 1√
n

with 1
n

n∑
i=1

(
X′i(M,Y i−1)

)2 ≤ P
1− ε− 1√

n

a.s.

Exploit connection between binary hypothesis testing and channel
coding with feedback under peak-power constraint
[Polyanskiy-Poor-Verdú (2011)] [Fong-T. (2015)]
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Outline

1 Background

2 Fixed-Length Feedback for the AWGN Channel

3 Fixed-Length Feedback for the G-MAC

4 Variable-Length Feedback for the G-MAC

5 Conclusion

Vincent Tan (NUS) Gaussian MACs with Feedback TUAT 2017 18 / 56



MACs and Gaussian MACs

The multiple access channel (MAC)

The Gaussian multiple access channel

Again assume g1 = g2 = 1.
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Capacity Region for the Gaussian MAC

-

6

R1

R2

C( P1
1+P2

) C(P1)

C( P2
1+P1

)

C(P2)

RCW

0

@
@
@

Cover (1975)
Wyner (1974)

R1 ≤ C(P1)

R2 ≤ C(P2)

R1 + R2 ≤ C(P1 + P2)
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Gaussian MAC with Feedback

Consider Gaussian version with expected long-term power constraints

1
n

n∑
i=1

E
[
X2

1i(M1,Y i−1)
]
≤ P1,

1
n

n∑
i=1

E
[
X2

2i(M2,Y i−1)
]
≤ P2.
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Capacity Region of the G-MAC with Feedback

Ozarow (1984) showed that the capacity region is

ROzarow(P1,P2)

:=
⋃

0≤ρ≤1

(R1,R2)

∣∣∣∣∣∣∣∣
R1 ≤ C

(
(1− ρ2)P1

)
,

R2 ≤ C
(
(1− ρ2)P2

)
,

R1 + R2 ≤ C
(

P1 + P2 + 2ρ
√

P1P2

)
 .

With feedback, capacity region is enlarged!

It appears that transmitters can cooperate!

Direct part is an extension of the Schalkwijk and Kailath coding
scheme
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CR of the G-MAC with Feedback P1 = P2 = 1
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ε-Capacity Region of the G-MAC with Feedback

Similarly to the single-user case, extend to non-vanishing errors

(R1,R2) is ε-achievable

⇐⇒ ∃ sequence of codes with (M1,M2) messages s.t.

lim
n→∞

1
n

log M1 ≥ R1 lim
n→∞

1
n

log M2 ≥ R2,

and the average probability of error

lim
n→∞

P(n)
e ≤ ε.

Cε(P1,P2) is the set of all ε-achievable (R1,R2).
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ε-Capacity Region of the G-MAC with Feedback

Theorem (Truong-Fong-T. (T-IT March 2017))

The ε-capacity region is

Cε(P1,P2) = ROzarow

( P1

1− ε
,

P2

1− ε

)
, for all ε ∈ [0, 1).

If we can tolerate an error of ≤ ε, we can operate at (R1,R2) satisfying

R1 ≤ C
((1− ρ2)P1

1− ε

)
R2 ≤ C

((1− ρ2)P2

1− ε

)
, for any 0 ≤ ρ ≤ 1.

R1 + R2 ≤ C
(P1 + P2 + 2ρ

√
P1P2

1− ε

)
This is optimal.
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ε-Capacity of the G-MAC with Feedback : Remarks

ε = 0 recovers Ozarow’s result

C(P1,P2) = C0(P1,P2) = ROzarow(P1,P2).

Again Cε depends on ε

Cε(P1,P2) = ROzarow

( P1

1− ε
,

P2

1− ε

)
, for all ε ∈ [0, 1).

Strong converse doesn’t hold

We have bounds on the “second-order” terms but they are quite
loose

Direct part follows similarly to the single-user case
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Proof Idea for the Converse : Step 1

Start with an information-spectrum bound somewhat similar to
Chen-Alajaji (1995) and Han (1998)

Lemma (Information-Spectrum Bounds)

Fix a MAC Wn(yn|xn
1, x

n
2) with feedback and error prob. ≤ ε.

For any γ1, γ2, γ3 > 0 and any {(QYi|X1i ,QYi|X2i ,QYi)}n
i=1,

log M1 ≤ γ1 − log+
[

1− ε− Pr
( n∑

i=1

log
W(Yi|X1i,X2i)

QYi|X2i(Yi|X2i)
≥ γ1

)]

log M2 ≤ γ2 − log+
[

1− ε− Pr
( n∑

i=1

log
W(Yi|X1i,X2i)

QYi|X1i(Yi|X1i)
≥ γ2

)]

log(M1M2) ≤ γ3 − log+
[

1− ε− Pr
( n∑

i=1

log
W(Yi|X1i,X2i)

QYi(Yi)
≥ γ3

)]

0
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Proof Idea for the Converse Part : Step 2

Given a code generating symbols {(X1i(M1,Y i−1),X2i(M2,Y i−1))}n
i=1, let

P1i := E[X2
1i], P2i := E[X2

2i], ρi :=
E[X1iX2i]√

P1iP2i
.

Define

ρ :=

∑n
i=1 ρi

√
P1iP2i

n
√

P1P2

Lemma (“Single-Letterization”)

|ρ| ≤ 1,
n∑

i=1

(
P1i(1− ρ2

i )
)
≤ nP1(1− ρ2), and

n∑
i=1

(
P1i + P2i + 2ρi

√
P1iP2i

)
≤ n
(

P1 + P2 + 2ρ
√

P1P2

)
.
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Proof Idea for the Converse Part : Step 3

Finally, we need to bound the probabilities. We do so using Chebyshev.

Lemma

For any T > 1, choose

γ1 := nC
(
P1(1− ρ2)T

)
+ n2/3

γ3 := nC
(
(P1 + P2 + 2ρ

√
P1P2)T

)
+ n2/3.

Then, with a good choice of Q’s

Pr
( n∑

i=1

log
W(Yi|X1i,X2i)

QYi|X2i(Yi|X2i)
≥ γ1

)
≤ 1

T
+ O(n−1/3)

Pr
( n∑

i=1

log
W(Yi|X1i,X2i)

QYi(Yi)
≥ γ3

)
≤ 1

T
+ O(n−1/3).
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Proof Idea for the Converse Part : Completion

Recall that

log M1 ≤ γ1 − log+
[

1− ε− Pr
( n∑

i=1

log
W(Yi|X1i,X2i)

QYi|X2i(Yi|X2i)
≥ γ1

)]

Probability term satisfies

Pr(· · · ) ≤ 1
T

+ O(n−1/3).

Choose
1
T

= 1− ε− O(n−1/3) so γ1 = nC
(P1(1− ρ2)

1− ε

)
+ O(n2/3).

Conclusion:

log M1 ≤ nC
(P1(1− ρ2)

1− ε

)
+ O(n2/3).

By product: Second-order term is upper bounded by O(n2/3).
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Wrap Up for Fixed-Length Feedback1

Generalized a result by Ozarow (1984) to non-vanishing ε ∈ [0, 1)

Established ε-capacity region for AWGN-MAC with feedback

Cε(P1,P2) = ROzarow

( P1

1− ε
,

P2

1− ε

)
.

First step to obtaining higher-order terms in asymptotic expansion

Current second-order bounds are loose

1“On Gaussian Channels with Feedback under Expected Power Constraints and with
Non-Vanishing Error Probabilities”’, L. V. Truong, S. L. Fong and V. Y. F. Tan, IEEE Transactions
on Information Theory, Vol. 63, No. 3, Pages 1746–1765, Mar 2017
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Outline

1 Background

2 Fixed-Length Feedback for the AWGN Channel

3 Fixed-Length Feedback for the G-MAC

4 Variable-Length Feedback for the G-MAC

5 Conclusion
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Gaussian MAC with feedback

Gaussian MAC with feedback

Consider the 2-user case. Results can be extended to the K-user
setting in a straightforward way.
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Stop-feedback codes for the Gaussian MAC

Let M1,M2 ∈ N, N,P1,P2 ∈ R++, and 0 < ε < 1.

An (M1,M2,N,P1,P2, ε) stop-feedback code for the 2-user Gaussian
MAC W(y|x1, x2) is defined by:

Two independent random variables Uj, j = 1, 2.
Each random variable is revealed to transmitter j = 1, 2 and the
receiver before the transmission starts.

(U1,U2) acts as common randomness used to initialize the
encoders and the decoder

Two sequences of encoders f (1)n : U1 × {1, 2, . . . ,M1} → R and
f (2)n : U2 × {1, 2, . . . ,M2} → R, n ≥ 1, defining channel inputs

Xj,n = f (j)n (Uj,Mj), j = 1, 2

where Wj is uniform on the message set {1, 2, . . . ,Mj}.
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Stop-feedback codes for the Gaussian MAC

A non-negative integer-valued random variable τ—a stopping time
of the filtration {σ(U1,U2,Yn)}∞n=1—which satisfies

E(τ) ≤ N.

τ is a random blocklength whose expectation is ≤ N.

The expected power constraints at the encoders
∞∑

n=1

E[X2
j,n] ≤ E(τ) · Pj, j = 1, 2.

A decoder which makes the final decision at time τ ,

(M̂1, M̂2) = gτ (U1,U2,Yτ ),

and satisfies

P
(
(M̂1, M̂2) 6= (M1,M2)

)
≤ ε.
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Some remarks

In a stop-feedback code, the stopping decision is based only on
the received sequence Yn.

The transmission length τ is a random variable adapted to the
filtration generated from the common randomness and the output
sequence {σ(U1,U2,Yn)}∞n=1.

A very limited amount of feedback is needed to send the stopping
decision to the transmitters to stop their transmissions.

Detection at the receiver is performed only at stopping time τ .
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Main Result

Let C(P) = 1
2 log(1 + P) denote the capacity of the AWGN channel

Theorem (Truong-T. (2017))

Achievability: There exists a sequence of (M1,M2,N,P1,P2, ε)
stop-feedback codes for the 2-user Gaussian MAC, for any (M1,M2)
satisfying

log Mj ≤

(
N

1− ε
− A

√
N

1− ε

)
C(Pj)− log N + O(1), j = 1, 2

log M1M2 ≤

(
N

1− ε
− A

√
N

1− ε

)
C(P1 + P2)− log N + O(1)

where A ≥ 0 is a constant.
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Main Results

Theorem (Truong-T. (2017))

Converse: Conversely, given any (M1,M2,N,P1,P2, ε) stop-feedback
code for the 2-user Gaussian MAC, the following inequalities hold

log Mj ≤
N · C(Pj) + hb(ε)

1− ε
, j = 1, 2

log M1M2 ≤
N · C(P1 + P2) + hb(ε)

1− ε
.
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Main Results

Corollary (Truong-T. (2017))

The ε-capacity region of the 2-user Gaussian MAC with stop-feedback,
denoted Csf(P1,P2, ε), is the set of all rate pairs (R1,R2) ∈ R2

+ satisfying

Rj ≤
C(Pj)

1− ε
, j = 1, 2

R1 + R2 ≤
C(P1 + P2)

1− ε
.
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Some remarks about the results

The multiplicative factors 1
1−ε in the inequalities are due to the

non-vanishing error probability regime that we study, and the use
of variable-length codes with feedback

Note, in contrast, that the strong converse holds for the Gaussian
MAC without feedback2

However, variable-length codes generally perform better than
fixed-length codes.

2S. L. Fong and V. Y. F. Tan. A proof of the strong converse theorem for Gaussian multiple
access channels. IEEE Trans. Inform. Theory, 62(8):4376–4394, Aug 2016.
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VLFT Codes

An (M1,M2,N,P1,P2, ε) variable-length feedback code with termination
(VLFT) is defined as an (M1,M2,N,P1,P2, ε) stop-feedback code
except that τ is a stopping time of {σ(U1,U2,M1,M2,Yn)}∞n=1 and

Xjn = f (j)n (Uj,Mj,Yn−1), j = 1, 2

Theorem (Truong-T. (2017))

For VLFT codes, the ε-capacity region, Ct(P1,P2, ε), is the set of all
(R1,R2) ∈ R2

+ satisfying

Rj ≤
C(Pj(1− ρ2))

1− ε
, j = 1, 2

R1 + R2 ≤
C(P1 + P2 + 2ρ

√
P1P2)

1− ε

for some ρ ∈ [0, 1].
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Some remarks about the results

The ε-capacity region for VLFT codes is larger than the
corresponding region for fixed-length feedback codes and stop
feedback codes.

Recall for fixed-length feedback codes the ε-capacity region is
given by

Rj ≤ C
(

Pj(1− ρ2)

1− ε

)
, j = 1, 2

R1 + R2 ≤ C
(

P1 + P2 + 2ρ
√

P1P2

1− ε

)
.
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Inclusion relations

In summary, the following relations hold:

Cno−fb(P1,P2, ε) ( Cfl(P1,P2, ε) ( Ct(P1,P2, ε)

RCW(P1,P2) ( ROz

(
P1

1− ε
,

P2

1− ε

)
(
ROz(P1,P2)

1− ε

for all ε ∈ (0, 1).

Furthermore,

Csf(P1,P2, ε) ( Ct(P1,P2, ε)

RCW(P1,P2)

1− ε
(
ROz(P1,P2)

1− ε

for all ε ∈ (0, 1).
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Proof of achievability

First, show that ∃ an intermediate
(
M1,M2,N′ + o(1),P1,P2,

1
N′
)

stop-feedback code with stopping time τ ′ such that

log Mj ≤
(

N′ − A
√

N′
)
· C(Pj)− log N′ + O(1),

log M1M2 ≤
(

N′ − A
√

N′
)
· C(P1+P2)−log N′+O(1),

expected stopping time
E(τ ′) ≤ N′ + o(1)

and expected powers

E
[ τ ′∑

n=1

X2
j,n

]
= E(τ ′) · Pj, j = 1, 2.

Choose N′ ≈ N/(1− ε) in the sequel.
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Proof of achievability
Existence of

(
M1,M2,N′ + o(1),P1,P2,

1
N′

)
stop-feedback codes

Define information densities:

i(xn
1; yn|xn

2) := log
WXn

1Yn|Xn
2

PXn
1 |X

n
2
×WYn|Xn

2

(xn
1, x

n
2, y

n).

Generate a size (M1,M2) random codebook 3,4 and define
stopping times as follows

τ
(1)
j,k := inf {n ≥ 0 : i (Xn

1(j); Yn|Xn
2(k)) > γ1} ,

τ
(2)
j,k := inf {n ≥ 0 : i (Xn

2(k); Yn|Xn
1(j)) > γ2} ,

τ
(3)
j,k := inf {n ≥ 0 : i (Xn

1(j),Xn
2(k); Yn) > γ3}

τj,k := max
{
τ
(1)
j,k , τ

(2)
j,k , τ

(3)
j,k

}

3V. Y. F. Tan and O. Kosut. On the dispersions of three network information theory problems.
IEEE Trans. Inform. Theory, 60(2):881–903, 2014.

4K. F. Trillingsgaard and P. Popovski. Variable-length coding for short packets over a multiple
access channel with feedback. In Proc. 11th Intl. Symp. on Wireless Communications Systems,
pp. 796–800, Barcelona, Spain, 2014.
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Proof of achievability
Existence of

(
M1,M2,N′ + o(1),P1,P2,

1
N′

)
stop-feedback codes

Final decision is made by the decoder at the stopping time

τ∗ := min
j,k

τj,k.

The output of the decoder is given by

g(Yτ
∗
) = max

{
(j, k) : τj,k = τ∗

}
where (j, k) is arranged in lexicographic order.
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Proof of achievability
Existence of

(
M1,M2,N′ + o(1),P1,P2,

1
N′

)
stop-feedback codes

Error probability satisfies5,6

P
(
g(Yτ

∗
) 6= (M1,M2)

)
≤ (M1 − 1)(M2 − 1)P(τ ′ ≥ τ̄ (3))

+ (M1 − 1)P(τ ′ ≥ τ̄ (1))
+ (M2 − 1)P(τ ′ ≥ τ̄ (2)),

Stopping time satisfies

E(τ∗) ≤ E(τ ′),

where τ ′, τ̄ (1), τ̄ (2), τ̄ (3) are some other stopping times.

5Y. Polyanskiy, H. V. Poor, and S. Verdu. Feedback in the non-asymptotic regime. IEEE Trans.
Inform. Theory, 57(8):4903-4925, 2011.

6K. F. Trillingsgaard and P. Popovski. Variable-length coding for short packets over a multiple
access channel with feedback. In Proc. 11th Intl. Symp. on Wireless Communications Systems,
pp. 796–800, Barcelona, Spain, 2014.
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Proof of achievability
Existence of

(
M1,M2,N′ + o(1),P1,P2,

1
N′

)
stop-feedback codes

Let X∞1 ,X∞2 , X̄∞1 , X̄∞2 ,Y∞ be i.i.d. infinite dimensional vectors
distributed according to

PX1(x1)PX2(x2)W(y|x1x2)PX1(x̄1)PX2(x̄2),

where PXj ∼ N (0,Pj) and W(y|x1x2) is the Gaussian MAC.

Define various stopping times (adapted to filtration
{σ(U1,U2,Yn)}n≥1):

τ (1) := inf
{

n ≥ 0 : i(Xn
1 ; Yn|Xn

2) > γ1
}
,

τ (3) := inf
{

n ≥ 0 : i(Xn
1 ,X

n
2 ; Yn) > γ3

}
,

τ̄ (1) := inf
{

n ≥ 0 : i(X̄n
1 ; Yn|Xn

2) > γ1
}
,

τ̄ (3) := inf
{

n ≥ 0 : i(X̄n
1 , X̄

n
2 ; Yn) > γ3

}
,

τ ′ := max
{
τ (1), τ (2), τ (3)

}
.

Vincent Tan (NUS) Gaussian MACs with Feedback TUAT 2017 48 / 56



Proof of achievability
Existence of

(
M1,M2,N′ + o(1),P1,P2,

1
N′

)
stop-feedback codes

Let X∞1 ,X∞2 , X̄∞1 , X̄∞2 ,Y∞ be i.i.d. infinite dimensional vectors
distributed according to

PX1(x1)PX2(x2)W(y|x1x2)PX1(x̄1)PX2(x̄2),

where PXj ∼ N (0,Pj) and W(y|x1x2) is the Gaussian MAC.

Define various stopping times (adapted to filtration
{σ(U1,U2,Yn)}n≥1):

τ (1) := inf
{

n ≥ 0 : i(Xn
1 ; Yn|Xn

2) > γ1
}
,

τ (3) := inf
{

n ≥ 0 : i(Xn
1 ,X

n
2 ; Yn) > γ3

}
,

τ̄ (1) := inf
{

n ≥ 0 : i(X̄n
1 ; Yn|Xn

2) > γ1
}
,

τ̄ (3) := inf
{

n ≥ 0 : i(X̄n
1 , X̄

n
2 ; Yn) > γ3

}
,

τ ′ := max
{
τ (1), τ (2), τ (3)

}
.

Vincent Tan (NUS) Gaussian MACs with Feedback TUAT 2017 48 / 56



Proof of achievability
Existence of

(
M1,M2,N′ + o(1),P1,P2,

1
N′

)
stop-feedback codes

Using the strongly-nonlattice property of the information densities
i(X1,n; Yn|X2,n), i(X2,n; Yn|X1,n), i(X1,n,X2,n; Yn) we can write the mean
and variance of the stopping times as

E[τ (j)] = N − A
√

N − G− Bj + o(1),

var(τ (j)) ≤ LjN + Fj + o(1), j = 1, 2, 3,

for appropriately chosen γ1, γ2, γ3. Here, A and G can be arbitrarily
chosen constants.

The above expressions are derived based ideas from renewal
theory by Gut7 and Lai and Siegmund8.

7A. Gut. On the moments and limit distributions of some first passage times. The Annals of
Probability, 2(2):277–308, 1974.

8T. L. Lai and D. Siegmund. A nonlinear renewal theory with applications to sequential
analysis II. The Annals of Statistics, 7(1):60–76, 1979.
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Proof of achievability
Bounding E(τ ′) : Main Innovation

Lemma (Expectation of the maximum of random variables)

Let {(X1,N ,X2,N ,X3,N)}N≥1 be three sequences of random variables
satisfying

E[Xj,N ] = N − A
√

N − G− Bj + o(1), j = 1, 2, 3,

for some constants B1,B2,B3 ∈ R and

var(Xj,N) ≤ LjN + Fj + o(1), j = 1, 2, 3,

for some other constants L1 > 0,L2 > 0,L3 > 0 and F1,F2,F3 ∈ R.

Then for some constants A,G we have

E[max{X1,N ,X2,N ,X3,N}] ≤ N + o(1).
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Proof of achievability
Bounding the error probability

Similarly, choosing a pair (M1,M2) satisfying

log Mj ≤ γj − log(3N′), j = 1, 2,

log M1M2 ≤ γ3 − log(3N′),

we obtain

P
(

g(Yτ
∗
) 6= (M1,M2)

)
≤ 1

N′
.

So the error probability constraint for the intermediate code is
satisfied.

But we need to control expected power and expected blocklength.
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Proof of achievability
Expected power constraints

Lemma (Generalization of Wald’s equation)

Let {Xn}∞n=1 be an infinite sequence of real-valued random variables, τ
a non-negative integer-valued random variable. Assume that

Xn are all integrable (finite-mean) random variables having the
same mean, E[Xn] = E[X1];
For all n, E[Xn · 1{τ ≥ n}] = E[Xn] · P(τ ≥ n);∑∞

n=1 E[|Xn| · 1{τ ≥ n}] <∞;
τ has finite expectation.

Then

E

[
τ∑

n=1

Xn

]
= E[τ ] · E[X1]

.

Usual Wald’s equation: {Xn}n is a sequence of i.i.d. rvs and τ a
non-negative integer-valued rv independent of {Xn}n . . .
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Proof of achievability
Expected power constraints

First, we observe that for j = 1, 2,

E

[
τ∗∑

n=1

X2
j,n

]
= E

[
τ∗∑

n=1

X2
j,n

∣∣∣∣(M1,M2) = (1, 1)

]

≤ E

[ τ1,1∑
n=1

X2
j,n

∣∣∣∣(M1,M2) = (1, 1)

]
PPV
≤ E

[
τ ′∑

n=1

X2
j,n

]
.

X2
j,n, j = 1, 2 here plays the role of Xn in the Lemma.

Then we obtain

E
[ τ∗∑

n=1

X2
j,n

]
≤ E[τ ′]Pj

Then terminate the code at τ∗ (create new rvs X̃j,n) so
∞∑

n=1

E
[
X̃2

j,n
]

= E[τ∗]Pj
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.

X2
j,n, j = 1, 2 here plays the role of Xn in the Lemma.

Then we obtain

E
[ τ∗∑

n=1

X2
j,n

]
≤ E[τ ′]Pj

Then terminate the code at τ∗ (create new rvs X̃j,n) so
∞∑

n=1

E
[
X̃2

j,n
]

= E[τ∗]Pj
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Proof of achievability
Existence of (M1,M2,N + o(1),P1,P2, ε) stop-feedback codes

Choosing N′ ≈ N/(1− ε) and using power control (using the code(
M1,M2,N′ + o(1),P1,P2,

1
N′
)

with probability (1− ε))9, we obtain:10

Lemma (Truong-T. (2017))

There exists an (M1,M2,N + o(1),P1,P2, ε) stop-feedback code for the
2-user Gaussian MAC, for any M1,M2 satisfying

log Mj ≤

(
N

1− ε
− A

√
N

1− ε

)
· C(Pj)− log N + O(1), j = 1, 2

log M1M2 ≤

(
N

1− ε
− A

√
N

1− ε

)
· C(P1 + P2)− log N + O(1)

9Y. Polyanskiy, H. V. Poor, and S. Verdu. Feedback in the non-asymptotic regime. IEEE Trans.
Inform. Theory, 57(8):4903–4925, 2011.

10L. V. Truong and V. Y. F. Tan. On AWGN channels and Gaussian MACs with variable-length
feedback. Submitted to IEEE Trans. Inform. Theory, 2016, revised April 2017. arXiv:1609.00594
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Conclusion

Many types of feedback: fixed-length, variable-length stop
feedback, variable length feedback with termination (VLFT)

For the Gaussian MAC, and for all ε ∈ (0, 1),

Cno−fb(P1,P2, ε) ( Cfl(P1,P2, ε) ( Ct(P1,P2, ε)

and
Csf(P1,P2, ε) ( Ct(P1,P2, ε)

Cno−fb(P1,P2, ε): no feedback Cover-Wyner region
Cfl(P1,P2, ε): Ozarow region with powers boosted by 1

1−ε
Csf(P1,P2, ε): Cover-Wyner region boosted by 1

1−ε
Ct(P1,P2, ε): Ozarow region boosted by 1

1−ε

Future work: (i) Second-order; (ii) Replace E[τ ] ≤ N with the
probabilistic constraint min{n ∈ Z+ : Pr(τ > n) ≤ εd} ≤ N [Altuğ,
Poor and Verdú (2015)]

Vincent Tan (NUS) Gaussian MACs with Feedback TUAT 2017 56 / 56



Conclusion

Many types of feedback: fixed-length, variable-length stop
feedback, variable length feedback with termination (VLFT)

For the Gaussian MAC, and for all ε ∈ (0, 1),

Cno−fb(P1,P2, ε) ( Cfl(P1,P2, ε) ( Ct(P1,P2, ε)

and
Csf(P1,P2, ε) ( Ct(P1,P2, ε)

Cno−fb(P1,P2, ε): no feedback Cover-Wyner region
Cfl(P1,P2, ε): Ozarow region with powers boosted by 1

1−ε
Csf(P1,P2, ε): Cover-Wyner region boosted by 1

1−ε
Ct(P1,P2, ε): Ozarow region boosted by 1

1−ε

Future work: (i) Second-order; (ii) Replace E[τ ] ≤ N with the
probabilistic constraint min{n ∈ Z+ : Pr(τ > n) ≤ εd} ≤ N [Altuğ,
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