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Measures of information

@ Consider two correlated memoryless sources (X™,Y™)ii.d. ~ Pxy
e The information contained in X™ is the entropy

H(X):= - Px(x)log Px(x);

@ The information contained in Y™ is the entropy H(Y')
e The information contained jointly in (X", Y ™) is the joint entropy H(X,Y)
@ The mutual information between X™ and Y is

I(X;Y)=H(X)+ H(Y) - HX,Y).

Vincent Y. F. Tan (NUS) Wyner’s, Exact and co-Rényi Cl IWCIT 2019



Measures of information

@ Consider two correlated memoryless sources (X™,Y™)ii.d. ~ Pxy
e The information contained in X™ is the entropy

H(X):= - Px(x)log Px(x);

@ The information contained in Y™ is the entropy H(Y')
e The information contained jointly in (X", Y ™) is the joint entropy H(X,Y)
@ The mutual information between X™ and Y is

I(X;Y)=H(X)+ H(Y) - HX,Y).

@ What is “common information” between X™ and Y "?
Gacs-Korner Common Information

Wyner's Common Information

Exact Common Information

Rényi Common Information
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Type 1: Wyner's Common Information
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Type 1: Wyner's Common Information

@ M, is uniformly distributed over M,, := {1,...,e""}
@ An (n, R) synthesis code consists of

® Pxny, : My — X" and Pyn|y, : Mp — Y™
@ The distribution induced by the code is

1
Pxryn(z™,y") i==— > Pxuar, (2" |m) Py s, (y"m)
|Mn| meM
@ Desideratum: Pxnyn = Ty
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance
between Pxnyn» and m%,
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance

between Pxnyn» and m%,

Theorem (Wyner (1975))

1
inf {R g ED(PXnYn 7%y ) — 0}
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance

between Pxnyn» and m%,

Theorem (Wyner (1975))

1
inf {R g ED(PXnYn 7%y ) — 0}

= min I(XY; W)

Pw Px\w Py |\w: Pxy=mxy
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance
between Pxnyn» and m%,

Theorem (Wyner (1975))

1
inf {R g ED(PXnYn 7%y ) — 0}

min I(XY; W)

Pw Px\w Py |\w: Pxy=mxy

= C'Wyner <7TXY)
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Type 1: Wyner's Common Information
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance
between Pxnyn» and m%,

Theorem (Wyner (1975))

1
inf {R g ED(PXnYn 7%y ) — 0}

min I(XY; W)

Pw Px\w Py |\w: Pxy=mxy

= C'Wyner <7TXY)

where Cwyner(Txy) is named Wyner's Common Information (Wyner's Cl)
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance
between Pxnyn» and m%,

Theorem (Wyner (1975))

1
inf {R g ED(PXnYn 7%y ) — O}

min I(XY; W)

Pw Px\w Py |\w: Pxy=mxy

= C'Wyner (7TXY)

where Cwyner (T xy) is named Wyner's Common Information (Wyner’s Cl)

@ How about requiring exact reconstruction, i.e.

n
PXnyn =Txvy, V'Tl‘?
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Type 1: Wyner's Common Information

@ Wyner used the (normalized) relative entropy to measure the distance
between Pxnyn» and m%,

Theorem (Wyner (1975))

1
inf {R g ED(PXnYn 7%y ) — O}

min I(XY; W)

Pw Px\w Py |\w: Pxy=mxy

= C'Wyner (7TXY)

where Cwyner (T xy) is named Wyner's Common Information (Wyner’s Cl)

@ How about requiring exact reconstruction, i.e.

n
PXnyn =Txvy, V'Tl‘?

@ Not possible with block codes.
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Type 2: Exact Common Information
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Abstract—This paper introduces the notion of exact common
information, which is the minimum description length of the
common randomness needed for the exact distributed generation
of two correlated random variables (X,Y). We introduce the
quantity G(X;Y) = minx_,w_y H(W) as a natural bound
on the exact common information and study its properties and
computation. We then introduce the exact common information
rate, which is the minimum description rate of the common
randomness for the exact generation of a 2-DMS (X,Y). We
give a multiletter characterization for it as the limit G(X;Y) =
limn-soo(1/n)G(X";Y™). While in general G(X;Y) is greater
than or equal to the Wyner common information, we show that
they are equal for the Symmetric Binary Erasure Source. We do
not know, however, if the exact common information rate has a
single letter characterization in general.

Figure: Introduced by Kumar,

Cheuk Ting Li
Electrical Engineering
Stanford University
Email: ctli@stanford.edu

Abbas El Gamal
Electrical Engineering
Stanford University
Email: abbas@stanford.edu

Section II. We do not, however, know if they are equal in
general.

The rest of this paper is organized as follows. In the next
section we introduce the exact distributed generation problem
and define the exact common information. We introduce the
“common-entropy” quantity G(X;Y) = miny_,w_,y H(W)
as a natural bound on the exact common information and study
some of its properties. In Section III, we define the exact
common information rate for a 2-DMS. We show that it is
equal to the limit G(X;Y) = lim,,_,.(1/n)G(X™;Y™) and
that it is in general greater than or equal to the Wyner common
information. One of the main results in this paper is to show
that G(X;Y) = J(X;Y) for the SBES. A consequence of this

Li and El Gamal in ISIT 2014
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Type 2: Exact Common Information
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Type 2: Exact Common Information

@ A synthesis code (P, , Pxnw, , Pynw,)
e WW,, can be any (not necessarily uniform) r.v. on a countable set
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Type 2: Exact Common Information

@ A synthesis code (P, , Pxnw, , Pynw,)
e WW,, can be any (not necessarily uniform) r.v. on a countable set

@ Distribution induced by the code is

PXnYn ,’y ZPWn PX”\W ( "|w)Pyn|Wn(y"|w)
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Type 2: Exact Common Information

Asymptotic rate induced by the code is

lim A (W)

n— oo n
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Type 2: Exact Common Information

Asymptotic rate induced by the code is

lim H(Wn)

n—00 n

@ Compress W,, by a prefix-free, zero-error variable-length code (e.g.,
Shannon-Fano or Huffman code)

fiWn = {01} = [ J {0, 1}"

n>1

@ Let the length of W,, be £(W,).
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Type 2: Exact Common Information

Asymptotic rate induced by the code is

lim H(Wn)

n—00 n

@ Compress W,, by a prefix-free, zero-error variable-length code (e.g.,
Shannon-Fano or Huffman code)

fiWn = {01} = [ J {0, 1}"

n>1

@ Let the length of W,, be £(W,).
@ Then the optimal expected codeword length L(W,,) = E[¢(W,,)] satisfies

H(Wy) < L(Wyn) < H(Wy) +1

which implies that
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Type 2: Exact Common Information

@ The exact common information (exact Cl) is defined as

TExact (ny) = inf { lim M

n—o0 n

: Pxnyn = w}}y,Vn 2 1}
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Type 2: Exact Common Information

@ The exact common information (exact Cl) is defined as

TExact (Trxy) = inf { lim M

n—o0 n

: Pxnyn = w}}y,Vn 2 1}

Theorem (Kumar, Li, and El Gamal (2014))

1
TExact (WXY) = lim — min H(W)

n—oo M PWP)(TL‘WPanV:P)(nyn:Tr%Y

Vincent Y. F. Tan (NUS) Wyner’s, Exact and co-Rényi Cl IWCIT 2019 9/36



Type 2: Exact Common Information

@ The exact common information (exact Cl) is defined as

TExact (Trxy) = inf { lim M

n—o0 n

: Pxnyn = w}}y,Vn 2 1}

Theorem (Kumar, Li, and El Gamal (2014))

1
TExact (WXY) = lim — min H(W)

n—oo M PWP)(TL‘WPanV:P)(nyn:Tr%Y

@ Multi-letter characterization!
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Type 2: Exact Common Information

@ The exact common information (exact Cl) is defined as

TExact (Trxy) = inf { lim M

n—o0 n

: Pxnyn = w}}y,Vn 2 1}

Theorem (Kumar, Li, and El Gamal (2014))

1
TExact (WXY) = lim — min H(W)

n—oo M PWP)(TL‘WPanV:P)(nyn:Tr%Y

@ Multi-letter characterization!
@ Exact Cl > Wyner’s Cl
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Type 2: Exact Common Information

@ The exact common information (exact Cl) is defined as

TExact (Trxy) = inf { lim M

n—o0 n

: Pxnyn = w}}y,Vn 2 1}

Theorem (Kumar, Li, and El Gamal (2014))

1
TExact (WXY) = lim — min H(W)

n—oo M PWP)(TL‘WPanV:P)(nyn:Tr%Y

@ Multi-letter characterization!
@ Exact Cl > Wyner’s Cl
@ Exact Cl > Wyner’s CI?
@ Open problem posed by KLE 2014
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Type 2: Exact Common Information

@ The exact common information (exact Cl) is defined as

: Pxnyn = w}}y,Vn 2 1}

n—o0 n

TExact (Trxy) = inf { lim M

Theorem (Kumar, Li, and El Gamal (2014))

1
TExact (WXY) = lim — min H(W)

n—oo M PWP)(TL‘WPanV:P)(nyn:Tr%Y

As expected the exact common information rate is greater

@ Multi-letter characterization! than or equal to the Wyner common information.
s Proposition 3.
(] EXaCt CI Z WynerS Cl @(X;Y) > J(X;Y).
o EXaCt Cl > Wyner’s Clr) In the following section, we show that they are equal for

the SBES in Example 1. We do not know if this is the case

] open problem posed by KLE 2014 in general, however.
Excerpt from KLE (2014)
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Type 3: Rényi Common Information

@ Rényi Cl was introduced by Yu and Tan (IEEE T-IT, 2018)
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Type 3: Rényi Common Information

@ Rényi Cl was introduced by Yu and Tan (IEEE T-IT, 2018)
@ Px,Qx are two discrete distributions on the same alphabet X
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Type 3: Rényi Common Information

@ Rényi Cl was introduced by Yu and Tan (IEEE T-IT, 2018)
@ Px,Qx are two discrete distributions on the same alphabet X
@ Rényi divergence of order o > 0 is defined as

a—1
Du(PlQx) = low X Pe(o) (555 )
reX
e a=1
Di(Px]|@x) = lim Da(Px||Qx) = D(Px|Qx)

: Px (x)
Do (Px||@Qx) := lim Do(Px||@x)=1log sup
(Px[|@x) = lim Da(Px|Qx) S0 x @)
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Type 3: Rényi Common Information

@ Recall that in Wyner’s Cl, the D(Px||Qx) is used as the measure
@ Define the a-Rényi common information as
To(rxy) :=inf{R: D,(Pxnyn|7%y) — 0}

1
inf{R: EDO,(PannHﬂS?y) %0}
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Type 3: Rényi Common Information

@ Recall that in Wyner’s Cl, the D(Px||Qx) is used as the measure
@ Define the a-Rényi common information as
To(rxy) :=inf{R: D,(Pxnyn|7%y) — 0}

1
inf{R: EDO,(PannHﬂS?y) %0}

@ «-Rényi Clis important in building a bridge between Exact Cl and Wyner’s Cl

@ Wyner’s Cl = 1-Rényi C| —— by definitions
(In Wyner's Cl, 2 D and D do not change Cwyner(Txv))

e Exact Cl = co-Rényi C| —— we will show this later
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Our Contributions

@ We establish the equivalence between the exact and co-Rényi Cls

@ We provide single-letter upper and lower bounds for these two quantities
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Our Contributions

@ We establish the equivalence between the exact and co-Rényi Cls
@ We provide single-letter upper and lower bounds for these two quantities

@ For doubly symmetric binary sources (DSBSes), we show that the upper and
lower bounds coincide

o Completely characterized
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Our Contributions

@ We establish the equivalence between the exact and co-Rényi Cls
@ We provide single-letter upper and lower bounds for these two quantities

@ For doubly symmetric binary sources (DSBSes), we show that the upper and
lower bounds coincide

o Completely characterized

@ Interestingly, for such sources, exact and co-Rényi Cls are strictly larger than
Wyner’s
e This answers the open problem posed by KLE
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Our Contributions

@ We establish the equivalence between the exact and co-Rényi Cls
@ We provide single-letter upper and lower bounds for these two quantities

@ For doubly symmetric binary sources (DSBSes), we show that the upper and
lower bounds coincide

o Completely characterized

@ Interestingly, for such sources, exact and co-Rényi Cls are strictly larger than
Wyner’s
e This answers the open problem posed by KLE

@ We extend these results to other sources, including Gaussian sources and
show an improvement over Li and El Gamal’s 2017 paper "Distributed
simulation of continuous random variables".
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e Main Results
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Equivalence Between oo-Rényi Cl and Exact Cl

For a bivariate source wxy on a finite alphabet,

Texact(Txy) = Too(TxY).
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Single-letter Bounds |

M B(rxy) < Too(Txy) = Txact (Txy) < TVB(7xy),
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Single-letter Bounds |

M B(rxy) < Too(Txy) = Txact (Txy) < TVB(7xy),

Coupling set C(Px, Py) :={Qxvy : Qx = Px,Qy = Py}
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Single-letter Bounds |

M B(rxy) < Too(Txy) = Txact (Txy) < TVB(7xy),

Coupling set C(Px, Py) :={Qxvy : Qx = Px,Qy = Py}

UB .
= — W P
I "(rxy) PWPxnllélnPYlW:{ H(XY|W)+ E w(w)

w
Pxy=rxy

1
ZQXY z,y) log T y)}

ma;
Qxy €C(Px|w=w Py |\w=uw)
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Single-letter Bounds |

M B(rxy) < Too(Txy) = Txact (Txy) < TVB(7xy),

Coupling set C'(Px, Py) := {Qxy : Qx = Px,Qy = Py}

UB .
= — P
VB (rxy) PwPXI?VlvnPYlW:{ HXY|W) + Y Pw(w)

w
Pxy=rxy

1
ZQXY z,y) log T y)}

max
Qxy €C(Px|w=w Py |\w=uw)

FLB(ny) = min {—H(XY|W) min Z Quww (w,w)
Pw Px 1w Py |w: Qurw €EC(Pyy PW)
Pxy=mxy

1
ZQXY z,y) log T y)}

ma.
Rxy €OPx|w=w Py w=uw) %
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Single-Letter Bounds Il

UB o . _
VB (rxy) = Pwpxrﬁinpyw:{ H(XY|W) + zw: Py (w
Pxy=rxy

X max ZQXYaJy (ly)}7

Qxy €C(Px|w=wPy|w=w)

IB(rxy):= _min {—H XY|W) + min OQww (w, w'
( ) PWPX\WPY\W: ( | ) Quw €EC(Pw,Pw) Z, ( )
Pxy=nxy "

ZQXY mulos (17y)}

max
QXYGC(PX|W waPy\W w/)
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Single-Letter Bounds Il

UB o . _
VB (rxy) = Pwpxrﬁinpyw:{ H(XY|W) + zw: Py (w
Pxy=rxy

X max ZQxya:y

Qxy €C(Px|w=wPy|w=w)

1
m(z y)}’

I B(rxy) = min {—H XYy|\w min Qww (w,w
( ) Pw Px\w Py |w: ( | ) Qww€C(Pw, Pw) Z ww )
Pxy=mxy

1
%QXY(%?J) log m}

max
Qxy €OPx|w=w:Py|w=w)

For TLB, if Q<= Py (w)1{w’ = w}, then 'YB = T'VB. Hence

FUB > ]_'\LB
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Single-Letter Bounds IlI

UB .

= _H(XY P

TV (rxy) Pwp)ggvnpw{ (XYIW) + 3" Py (w)
Pxy=mxy w

X max ZQnyylog (1y)}

Qxy €C(Px|w=wPyiw=w)
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Single-Letter Bounds IlI

UB :

= m —H(XY|W P

2 (rxy) PwawgleW:{ (XY [W) + E w(w)
Pxy=mxy w

X max ZQnyylog (1y)}

Qxy €O(Px|w=w,Pyiw=w)

ForT'VUB,if Qxy < P)({”‘)W wP)(,"T‘)/V > then TUB = Cyy ., because
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Single-Letter Bounds IlI

UB :

= m —H(XY|W P

2 (rxy) PwawgleW:{ (XY [W) + E w(w)
Pxy=mxy w

X max ZQnyylog (1y)}

Qxy €O(Px|w=w,Pyiw=w)

ForT'VUB,if Qxy < P)({”‘)W wPl(,"T‘)/V > then TUB = Cyy ., because

— Ho(XY|W) + Y PP (w) ZPX?W W@ P, () log

= —H (XY|W) + H, (W) = W(XY; W)

m(z,y)

Hence
UB
r > C'Wyner
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Doubly Symmetric Binary Source (DSBS)

@ Consider (X,Y) such that X ~ Bern()and Y = X & E with
E ~ Bern(p),p € (0, ) independent of X
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Doubly Symmetric Binary Source (DSBS)

@ Consider (X,Y) such that X ~ Bern()and Y = X & E with
E ~ Bern(p),p € (0, ) independent of X

Theorem (Evaluation of Upper and Lower Bounds for DSBS(p))

Fora DSBS (X,Y),

Teo(mxy) = TExact (TxY)

— —9h(a) — (1 — 2a) log % (&® + (1 - a)?)| - 2aloga(l - 0)],

where a := =Y. € (0,1) and h(a) := —aloga — (1 — a)log(1 — a).
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Doubly Symmetric Binary Source (DSBS)

@ Consider (X,Y) such that X ~ Bern()and Y = X & E with
E ~ Bern(p),p € (0, ) independent of X

Theorem (Evaluation of Upper and Lower Bounds for DSBS(p))

Fora DSBS (X,Y),

Teo(mxy) = TExact (TxY)

= —2h(a) — (1 — 2a)log % (a*+ (1 —a)?)| — 2alogla(l —a)],

where a := =Y. € (0,1) and h(a) := —aloga — (1 — a)log(1 — a).

@ Forp € (0, %),
TOC(WXY) — TExa(‘,t(ﬂ_XY) > CVVyner(ﬂ-XY)

Answers KLE’s open problem.
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Doubly Symmetric Binary Source (DSBS)

@ Consider (X,Y) such that X ~ Bern()and Y = X & E with
E ~ Bern(p),p € (0, ) independent of X

Theorem (Evaluation of Upper and Lower Bounds for DSBS(p))

Fora DSBS (X,Y),

Teo(mxy) = TExact (TxY)

= —2h(a) — (1 — 2a)log % (a*+ (1 —a)?)| — 2alogla(l —a)],

where a := =Y. € (0,1) and h(a) := —aloga — (1 — a)log(1 — a).

@ Forp € (0, %),
TOC (WXY) = TExa(‘,t (WXY) > CVVyner(ﬂ-XY)
Answers KLE’s open problem.

@ KLE also considered Symmetric Binary Erasure Source (SBES), for which,
they showed Trxact (Txy) = Cwyner (Txy)
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Numerical Results — DSBS

1 T T

—©o6— Exact and co-Renyi Com. Inf.
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Gaussian source with Corr. Coef. p € [0,1)
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Gaussian source with Corr. Coef. p € [0,1)

1+ 1
|: p:| S Too(ﬂ'XY) S TExact(ﬂ_XY) S

The gap 1+ < 0.5 nats/symbol or 0.72 bits/symbol

14 T T
——8— Li and El Gamal Upper Bound -20
—o6— Our Upper Bound
12 - ‘+\V'ynex Com. Inf. 0 1
p
L Txy =N
5o Y (M ’ {P 1
€
>
D g
s (Li—El Gamal)
o 1 ama
= TExact ( XY )
s 41
— +24log2.
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Outline

@ Proof Ideas
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Proof Sketch

@ Step 1: establish the equivalence between the exact and co-Rényi Cls
o drate-R exact Cl code <= drate-R co-Rényi Cl code
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Proof Sketch

@ Step 1: establish the equivalence between the exact and co-Rényi Cls
o drate-R exact Cl code <= drate-R co-Rényi Cl code

@ Step 2: prove the achievability part (upper bound) for co-Rényi Cl
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Proof Sketch

@ Step 1: establish the equivalence between the exact and co-Rényi Cls
o drate-R exact Cl code <= drate-R co-Rényi Cl code

@ Step 2: prove the achievability part (upper bound) for co-Rényi Cl

@ Step 3: prove the converse part (lower bound) for co-Rényi Cl
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Step 1: Equivalence: —-

Lemma (Vellambi-Kliewer (2016))

3 rate-R co-Rényi Cl code — 3 rate-R exact Cl code
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Step 1: Equivalence: —-

Lemma (Vellambi-Kliewer (2016))

3 rate-R co-Rényi Cl code — 3 rate-R exact Cl code

@ drate-R oo-Rényi Cl code
° DOO(PX"Y””WSL(Y) <e — PX"Y" (mnjyn) < eeﬂ—;(y (xnayn) ’vwn’yn
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Step 1: Equivalence: —-

Lemma (Vellambi-Kliewer (2016))

3 rate-R co-Rényi Cl code — 3 rate-R exact Cl code

@ drate-R oo-Rényi Cl code
° DOO(PX"Y””WSL(Y) <e — PX"Y" (mnjyn) < eeﬂ—;(y (xnayn) ’vwn’yn

@ Define
e Ty (27,y") — Pxnyn (2",y")
e —1

ﬁxnyn (™, y") =

)

then obviously, ﬁXnYn (z™,y™) is a distribution
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Step 1: Equivalence: —-

Lemma (Vellambi-Kliewer (2016))
3 rate-R co-Rényi Cl code — 3 rate-R exact Cl code

@ drate-R oo-Rényi Cl code
° DOO(PX"Y””WSL(Y) <e — PX"Y" (mnjyn) < eeﬂ—;(y (xnayn) ’vwn’yn

@ Define
eeﬂ-?(Y ([En’yn) — Pxnyn (xn7yn)
ec—1

Pxnyn (z",y") =

)

~

then obviously, Pxny~ (2™, y™) is a distribution
@ Hence 7%y can be written as a mixture distribution

Ty (2", y") = e Pxnyn (2",y") + (1 —e™°) Pynyn (™, y™)
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Step 1: Equivalence: —-

Ty (2%, y") = e Pxnyn (2", y") + (1= €7¢) Pxnyn (2",y")

@ A time-sharing variable-length scheme:

e The encoder first generates U ~ Bern(e™¢), and transmits it to two generators
using 1 bit

e If U = 1, then the encoder and two generators use the rate-R co-Rényi Cl code
to generate Pxnyn

e If U = 0, then the encoder generates (X", Y") ~ Pxnyn, and compresses it
with rate log | X'|| )| to generate Pxnyn
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e The encoder first generates U ~ Bern(e™¢), and transmits it to two generators
using 1 bit

e If U = 1, then the encoder and two generators use the rate-R co-Rényi Cl code
to generate Pxnyn

e If U = 0, then the encoder generates (X", Y") ~ Pxnyn, and compresses it
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Step 1: Equivalence: —-

Ty (2%, y") = e Pxnyn (2", y") + (1= €7¢) Pxnyn (2",y")

@ A time-sharing variable-length scheme:

e The encoder first generates U ~ Bern(e™¢), and transmits it to two generators
using 1 bit

e If U = 1, then the encoder and two generators use the rate-R co-Rényi Cl code
to generate Pxnyn

e If U = 0, then the encoder generates (X", Y") ~ Pxnyn, and compresses it
with rate log | X'|| )| to generate Pxnyn

@ The induced distribution is 7% exactly
@ The total code rate
+e R+ (1—e ) log|X||Y|— R

asn — o0o,e — 0
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Step 1: Equivalence: <—

d rate-R co-Rényi Cl code < 4 rate-R exact Cl code I
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Step 1: Equivalence: <—

d rate-R co-Rényi Cl code < 4 rate-R exact Cl code I

@ Let {(Pw,, Pxxyw, Pyrw)}ren be a given sequence of rate- R exact Cl codes s.t.

e 1 H(Pw,) — Rask — oo but Wy is not uniform!
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Step 1: Equivalence: <—

d rate-R co-Rényi Cl code < 4 rate-R exact Cl code

@ Let {(Pw,, Pxxyw, Pyrw)}ren be a given sequence of rate- R exact Cl codes s.t.
e 1 H(Pw,) — Rask — oo but Wy is not uniform!
How to use M ~ Unif[1 : "] to generate Wy, ~ Py, ?

n

@ For fixed k, consider a supercode (Py, , Py vy,

copies of (Pw,,, Pxrjw, s Py s w,)

k1, ) Which is n independent
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@ Let {(Pw,, Pxxyw, Pyrw)}ren be a given sequence of rate- R exact Cl codes s.t.
e 1 H(Pw,) — Rask — oo but Wy is not uniform!
How to use M ~ Unif[1 : "] to generate Wy, ~ Py, ?
@ For fixed k, consider a supercode (P, , iy, > Pyx |y, ) Which is n independent
copies of (Pw,,, Pxrjw, s Py s w,)
@ Use M ~ Unif[1 : ¢"*"] to simulate P}, by the mapping f, which is constructed
below:
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e 1 H(Pw,) — Rask — oo but Wy is not uniform!
How to use M ~ Unif[1 : "] to generate Wy, ~ Py, ?
@ For fixed k, consider a supercode (P, , iy, > Pyx |y, ) Which is n independent
copies of (Pw,,, Pxrjw, s Py s w,)
@ Use M ~ Unif[1 : ¢"*"] to simulate P}, by the mapping f, which is constructed
below:
e Bythe AEP, W™ ~ Py, is, with high probability, “uniformly” distributed over the

typical set A™ (P, )
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@ Use M ~ Unif[1 : ¢"*"] to simulate P}, by the mapping f, which is constructed
below:
e Bythe AEP, W™ ~ Py, is, with high probability, “uniformly” distributed over the

typical set A™ (P, )
e M is also uniform
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e 1 H(Pw,) — Rask — oo but Wy is not uniform!
How to use M ~ Unif[1 : "] to generate Wy, ~ Py, ?
@ For fixed k, consider a supercode (P, , iy, > Pyx |y, ) Which is n independent
copies of (Pw,,, Pxrjw, s Py s w,)
@ Use M ~ Unif[1 : ¢"*"] to simulate P}, by the mapping f, which is constructed
below:
e Bythe AEP, W™ ~ Py, is, with high probability, “uniformly” distributed over the

typical set A™ (P, )
e M is also uniform
o f “uniformly” maps elements in [1 : ¢"*%] to each sequence in A" (P, )
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Step 1: Equivalence: <—

d rate-R co-Rényi Cl code < 4 rate-R exact Cl code

@ Let {(Pw,, Pxxyw, Pyrw)}ren be a given sequence of rate- R exact Cl codes s.t.
e 1 H(Pw,) — Rask — oo but Wy is not uniform!
How to use M ~ Unif[1 : "] to generate Wy, ~ Py, ?
@ For fixed k, consider a supercode (P, , iy, > Pyx |y, ) Which is n independent
copies of (Pw,,, Pxrjw, s Py s w,)
@ Use M ~ Unif[1 : ¢"*"] to simulate P}, by the mapping f, which is constructed
below:
e Bythe AEP, W™ ~ Py, is, with high probability, “uniformly” distributed over the
typical set A™ (P, )

e M is also uniform
o f “uniformly” maps elements in [1 : ¢"*%] to each sequence in A" (P, )

e Then by assumption

Deo(Pyan|Piv) =50 it R> ZH(Pwy).
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Step 1: Equivalence: <—

w n Xk
@) b mevk
M
WTL n Y’I’Lk}
fe) k P‘/kmfk
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Step 1: Equivalence: <—

wr n Xk
f () k PX kW,
M
wn Ynk

f0) k VEW

@ For the given channel P)?'“H/Vk ng‘\wu
) k
Py, ” P)rék\wk ng\wk > TXY

n n
Py ’ PX‘~'|W},PY’<\WL,. — Pxnyrn
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Step 1: Equivalence: <—

wn - Xnk
f () k PX kW,
M
wn - Ynk
f() k PY“ [Wy,

n
@ For the given channel PP ka, Pyk.‘wk,

n n n kn
Py — Pxwyw, Pyrjw, — Xy

n n
Pf(M) — PX}"”V]‘,PY’“‘VV;» — Panykn

@ By the data processing inequality (DPI) for Rényi divergence,

7rXY) D (Pf(M)”PxCIL/k) =30

Do (Pxinyin
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Step 2: Achievability for T (7xy)

@ For 0 < ¢ < e <1, define the truncated product distributions
Qun (") o< Py (w) 1 {w" € T (Pw) },
Qcnpwe (2" [w") o< Py (") 1{a" € T (Pxwlw™) |

Qe (") o Py (5" [w") 1 {y™ € T (Pypwlw™) }
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Step 2: Achievability for 7. (7xy)

@ For 0 < ¢ < e <1, define the truncated product distributions
Qun (") o< Py (w) 1 {w" € T (Pw) },
Qcnpwe (2" [w") o< Py (") 1{a" € T (Pxwlw™) |

Qe (") o Py (5" [w") 1 {y™ € T (Pypwlw™) }

@ Traditional random code, but generated according to these truncated product
distributions

Qg (- W (M) X0

Qy e (| Wr(a)) |2

C = {W™ (1) merq With W (1) ~ Quyrn
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Step 2: Achievability for T (7xy)

By using Union Bound and Bernstein’s inequality, we show that for such a code, if
R 2 FUB(ﬂ'X}/), then

max Pxnyn(z",y")

<1l+4o0(1
(z" .y™)€supp(Pxnyn) Ty (T, y") @)

i.e., Doo(Pxnyn||m%y) = 0
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Step 2: Achievability for 7. (7xy)

By using Union Bound and Bernstein’s inequality, we show that for such a code, if
R 2 FUB(ﬂ'X}/), then

max Pxnyn(z",y")

<1+o(1
(z™,y™)€esupp(Pxnyn) W?(y(:c”,y") ( )

i.e., Doo(Pxnyn||m%y) = 0

T (P [ W)X TV (Ryy W)
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Step 3: Converse for T (rxy)

@ Key steps in Converse Part:

> definition of Dso

Pxcnpr (2™ m) Pynp (y™m)
max log

nR > max
mox™y ﬂ‘?{Y (xnzyn)

Vincent Y. F. Tan (NUS) Wyner’s, Exact and co-Rényi Cl IWCIT 2019 29/36



Step 3: Converse for T (rxy)

@ Key steps in Converse Part:

> definition of Dso

Pxcnpr (2™ m) Pynp (y™m)
max log
zn,yn ﬂ-?(Y (xn7 yn)

> ZPM(m) max Z Q @™, y"|m)

Qxnyn|mME€C(Pxn v Pynim) on

nR > max
m

Pxnpr(@™m) Py na (Y™ Im)
W?{y (:En’ yn)

X log > max > average
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Step 3: Converse for T (rxy)

@ Key steps in Converse Part:

Pxcnpr (2™ m) Pynp (y™m)

nR > max max lo > definition of D
=Tty T ) ~
> Pu(m) max > Q" y"m)
oy QX"Y”|M€C<PX"L\M7PY”\M)zn’yn '

Pxenjpg (@™ m) Pynag (y™Im)

X log > max > average
%y (2™ y"™)
= —H(X"|W) = HY™ W)+ Pr(m)
m
1
X max Q(z",y"|m)log —————
QX"LY"|M€C(PX"\M7PY"|M)I%n Ty (27, y™)
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Step 3: Converse for T (rxy)

@ Key steps in Converse Part:

Pxcnpr (2™ m) Pynp (y™m)

nR > max max lo > definition of D
=Tty T ) ~
> Pu(m) max > Q" y"m)
oy QX"Y”|M€C<PX"L\M7PY”\M)zn’yn '

Pxenjpg (@™ m) Pynag (y™Im)

X log > max > average
%y (2™ y"™)
= —H(X"|W) = HY™ W)+ Pr(m)
m
1
X max Q(z",y"|m)log —————
QX"LY"|M€C(PX"\M7PY"|M)I%n Ty (27, y™)
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Step 3: Converse for T (rxy)

@ Key steps in Converse Part:

Pxnps(2™|m)Pyn "m
e ar (27 M) Py (3™ [m) > definition of Dog

nR > max max log
m

zn,yn ﬂ-?(Y (xn7 yn)
> Ppr(m) max Q (2", y"|m)
; QX"Y”|M€C(PX"LU\17PY”\ZW)zgn
Pxenjpg (@™ m) Pynag (y™Im)
X log - > max > average
Xy (xn» yn)

H(X"™|W) — H(Y™|W) ZPM
X max Z Q(z"™,y"|m) log

Qxnyn|m€C(Pxnim Pynin) 5 %y (27, y™)
@ Key steps in Single-letterization:

e —H(X™|W)— H(Y™|W) by traditional method (chain rule)
o for the last term,

max > max }
Qxnyn|pm€C(Pxn n,Pynn) QXY\XI 1yi—1,,EC(Py X, | X 1P v, | Yi— 1), Vi€[lin]
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Why Exact Cl (or co-Rényi Cl) > Wyner’s CI?

T((n) (nyw ‘WH)XT((“) (vaw |Wn)

v

— overflow!
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Why Exact Cl (or co-Rényi Cl) > Wyner’s CI?

T(”)(PXM, (W )T (R, |W")

€

v

VR ——overflow!

7:(”) (Px )

@ Assume Pw Px|w Py|w attains Cwyner (7xv)
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Why Exact Cl (or co-Rényi Cl) > Wyner’s CI?

T(”)(PXM, (W )T (R, |W")

€

v

VR ——overflow!

7:(”) (Px )

@ Assume Pw Px|w Py|w attains Cwyner (7xv)

@ Wyner’s Cl requires %ﬁyy)) =1+ o(1) for aimost all (z™,y™) € 7™ (rxy)
XY ’
(Blue Region)
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Why Exact Cl (or co-Rényi Cl) > Wyner’s CI?

T (P |W )X T (R, |W')

€

v

— overflow!

7:(”) (Px )

@ Assume Pw Px|w Py|w attains Cwyner (7xv)

@ Wyner's Cl requires "2 (2"0) — 1 4 o(1) for almost all (2", y") € T (rxv)

WS(V(I7L19")

(Blue Region)
@ oco-Rényi Cl requires %@Uf;) < 1+ o(1)for
XY e
(Union of Squares)

all (z",y") € supp(Pxnyn)
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Why Exact Cl (or co-Rényi Cl) > Wyner’s CI?

T(”)(PXM, (W )T (R, |W")

€

A

VR ——overflow!

7:(”) (Px )
@ Assume Pw Px|w Py|w attains Cwyner (7xv)
@ Wyner’s Cl requires %ﬁyy)) =1+ o(1) for aimost all (z™,y™) € 7™ (rxy)
(Blue Region)
@ oco-Rényi Cl requires %@U}{;) <1+ o(1)forall (z™,y™) € supp(Pxnryn)
(Union of Squares)

@ Butin general, supp(Pxnyn 0T (rxy (there exists overflow, e.g., for the DSBS!)
Z=
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When Exact Cl (or co-Rényi Cl) = Wyner’s CI?

@ Sulfficient condition:
H(X|W = w)H(Y|W = w) = 0 for each w [Vellambi-Kliewer 2016]
= {PxjwPyyw} =C(Px\w,Py\w)
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When Exact Cl (or co-Rényi Cl) = Wyner’s CI?

@ Sufficient condition:
H(X|W = w)H(Y|W = w) = 0 for each w [Vellambi-Kliewer 2016]
= {PxjwPyyw} =C(Px\w,Pyiw)
= T (mxy) % Uynee (T (Pxwlwm) x T (Pyw ™))
— ’Te(") (rxvy) = supp(Pxnyn) (No overflow)
= oo-Rényi CI (or Exact Cl) = Wyner’s Cl
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When Exact Cl (or co-Rényi Cl) = Wyner’s CI?

@ Sufficient condition:
H(X|W = w)H(Y|W = w) = 0 for each w [Vellambi-Kliewer 2016]
= {PxjwPyyw} =C(Px\w,Pyiw)
= T (mxy) % Uynee (T (Pxwlwm) x T (Pyw ™))
— ’Te(") (rxvy) = supp(Pxnyn) (No overflow)
= oo-Rényi CI (or Exact Cl) = Wyner’s Cl

T (P W )T (P | W)

(
7:(”](Pv) €
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When Exact Cl (or co-Rényi Cl) = Wyner’s CI?

@ Sufficient condition:
H(X|W = w)H(Y|W = w) = 0 for each w [Vellambi-Kliewer 2016]
= {PxjwPyyw} =C(Px\w,Pyiw)
= T (mxy) % Uynee (T (Pxwlwm) x T (Pyw ™))
— ’Te(") (rxvy) = supp(Pxnyn) (No overflow)
= oo-Rényi CI (or Exact Cl) = Wyner’s Cl

T (P W )T (P | W)

(
7:(”](Pv) €

@ For this case, Wyner’s Cl code forms a “perfect covering”
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When Exact Cl (or oco-Rényi Cl) = Wyner’s Cl

Example for Sufficient Condition: H(X|W = w)H(Y|W = w) = 0 for each w
[Vellambi-Kliewer 2016]
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When Exact Cl (or oco-Rényi Cl) = Wyner’s Cl

Example for Sufficient Condition: H(X|W = w)H(Y|W = w) = 0 for each w
[Vellambi-Kliewer 2016]

@ Symmetric Binary Erasure Source (SBES)
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1 p < 1
0 Too(mxy) = TExact (Mxv) = Cwyner (Txy) = -2
’ ’ H(p) p>3
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e Follow-Up Work and Conclusions
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Exact Cl is equivalent to Exact Channel Simulation

@ How much information is required to create correlation remotely?

K,, ~ Unif[e"F0)

X"~ 7l Parcore W, € [enf] Pronr Y™~ (1XT)
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Exact Cl is equivalent to Exact Channel Simulation

@ How much information is required to create correlation remotely?

K,, ~ Unif[e"F0)

X" ~ ﬂ'g'( PW XK an [enR] Pyn‘W K Y™ ~ ﬂ-gl/|X(|Xn)

@ When randomness is shared by the encoder and decoder, what is the optimal
tradeoff between the communication rate and shared information rate?

@ Lei Yu and Vincent Y. F. Tan, “Exact channel synthesis,” submitted to IEEE
Trans. Inf. Theory, Nov. 2018.
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Exact Cl is equivalent to Exact Channel Simulation

@ How much information is required to create correlation remotely?

K,, ~ Unif[e"F0)

X" ol W, € [e"F] Y™~ (X7

Py, 1xnK, Pyriw, K,

@ When randomness is shared by the encoder and decoder, what is the optimal
tradeoff between the communication rate and shared information rate?

@ Lei Yu and Vincent Y. F. Tan, “Exact channel synthesis,” submitted to IEEE
Trans. Inf. Theory, Nov. 2018.

@ Sharpens a bound on the shared information rate in “Quantum Reverse
Shannon Theorem” by Bennett, Devetak, Harrow, Shor, and Winter
(IEEE T-IT, 2014).
e The proof that a linear number of bits is sufficient for exact channel simulation
was achieved by Harsha et al. (2010) and Li and El Gamal (2018).
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@ We establish the equivalence between the exact and co-Rényi Cls

@ Provide single-letter upper and lower bounds for these two quantities
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We establish the equivalence between the exact and co-Rényi Cls

Provide single-letter upper and lower bounds for these two quantities

For DSBSes, we show that the upper and lower bounds coincide
o Completely characterized

Interestingly, for such sources, exact and co-Rényi Cls are strictly larger than
Wyner’s
@ This answers the open problem posed by KLE

We extend these results to other sources, including Gaussian sources

@ L. Yuand V. Y. F. Tan, “On exact and co-Rényi common informations,”
submitted to IEEE Trans. Inf. Theory, Oct. 2018.
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Thank you for your attention!
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