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Best arm identification in linear bandits

Arm set [K ] = {1, . . . ,K} and their feature vectors {ai}Ki=1 ⊆ Rd .

Arm i ∈ [K ] is associated with reward distribution νi supported on
[0, 1], and its mean is

µi = 〈ai ,θ∗〉,

where θ∗ ∈ Rd is unknown parameter.

Given fixed-budget T > 0, for each time step t = 1, . . . ,T , the agent
pulls arm At ∈ [K ] and obtains reward Xt := XAt ,NAt ,t

, where

Ni ,t =
t∑

s=1

1{As=i}

is the number of times arm i is pulled up to time t, and Xi ,n ∼ νi
denotes the reward obtained on the nth pull of arm i .
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Best arm identification in linear bandits

After T time steps, the agent identifies ÎT ∈ [K ] as the best arm.

The objective is to identify the best arm with probability as high as
possible, i.e., P(ÎT = i∗) is as large as possible, where

i∗ = arg max
i∈[K ]

µi

is denoted as the best arm and µi ∈ R is the mean of distribution νi .

We assume the best arm is unique.
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Problem Statement: Differential Privacy

Let X := {x = (xi ,t)i∈[K ],t∈[T ]} ⊆ [0, 1]KT denote the collection of all
possible rewards outcomes from the arms.

Any sequential arm selection policy of the decision maker takes inputs
from X and produces (A1, . . . ,AT , ÎT ) ∈ [K ]T+1 as outputs in the
following manner: for an input x = (xi ,t) ∈ X ,

Output at time t = 1 : A1 = A1,

Output at time t = 2 : A2 = A2(A1, xA1,NA1,1
)

Output at time t = 3 : A3 = A3(A1, xA1,NA1,1
,A2, xA2,NA2,2

)

...

Output at time t = T : AT = AT (A1, xA1,NA1,1
, . . . ,AT−1, xNAT−1

,T−1)

Terminal output : ÎT = ÎT (A1, xA1,NA1,1
, . . . ,AT , xNAT−1

,T ).

Vincent Tan (NUS) Feb 20th, 2024 4 / 25



Problem Statement: Differential Privacy

Let X := {x = (xi ,t)i∈[K ],t∈[T ]} ⊆ [0, 1]KT denote the collection of all
possible rewards outcomes from the arms.

Any sequential arm selection policy of the decision maker takes inputs
from X and produces (A1, . . . ,AT , ÎT ) ∈ [K ]T+1 as outputs in the
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Differential Privacy

We say that x = (xi ,n) and x ′ = (x ′i ,n) are neighbouring if they differ in
exactly one location, i.e., there exists a unique (exactly one)
(i , n) ∈ [K ]× [T ] such that

xi ,n 6= x ′i ,n and xj ,s = x ′j ,s for all (j , s) 6= (i , n).

Definition: Differential Privacy

Given any ε > 0, a randomised policy M : X → [K ]T+1 satisfies
ε-differential privacy if, for any pair of neighbouring x , x ′ ∈ X ,

PM(M(x) ∈ S) ≤ eε PM(M(x ′) ∈ S) ∀S ⊂ [K ]T+1.
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Methodology: Overview

To meet the ε-DP guarantee, our approach is to add Laplacian noise
to the empirical mean reward of each arm.

The magnitude of the noise is inversely proportional to the product of
ε and the number of times the arm is pulled. In particular, we choose

ξ̃
(p)
i ∼ Lap

(
1

(Ni ,Tp − Ni ,Tp−1)ε

)
where Tp is the time step at the start of phase p.

Intuitively, to minimize the maximum Laplacian noise that is added
(so as to minimize the failure probability of identifying the best arm),
we aim to balance the number of pulls for each arm.
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Methodology: Max-Det collection

Fix d ′ ∈ N. For any set S ⊂ Rd ′ with |S| = d ′ vectors, each of length d ′,
let Det(S) to denote the absolute value of the determinant of the d ′ × d ′

matrix formed by stacking the vectors in S as the columns of the matrix.

Definition: Max-Det collection

Fix d ′ ∈ N. Given any finite set A ⊂ Rd ′ with |A| ≥ d ′, we say B ⊂ A
with |B| = d ′ is a Max-Det collection of A if

Det(B) ≥ Det(B′) for all B′ ⊂ A with |B′| = d ′.
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Methodology: Max-Det collection

Example: Let d ′ = 2 and S be the set of vectors

{[
1
4

]
,

[
2
5

]
,

[
2
6

]}

The subsets of vectors of size d = 2 are

B1 =

{[
1
4

]
,

[
2
5

]}
, B2 =

{[
1
4

]
,

[
2
6

]}
, B3 =

{[
2
5

]
,

[
2
6

]}
.

The absolute values of the determinants are

Det(B1) =

∣∣∣∣det([1 2
4 5

])∣∣∣∣ = 3, Det(B2) = 2, Det(B3) = 2.

So, the Max-Det collection is B1.
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Methodology: DP-BAI Policy

Our policy for Differentially Private Best Arm Identification, called
DP-BAI, based on the idea of successive elimination (SE) of arms,
operates over a total of M phases, where M = Θ(log d).

In each phase p ∈ [M], the agent maintains an active set Ap of arms
which are potential contenders for emerging as the best arm. The
policy ensures that with high probability, the true best arm lies within
the active set in each phase.

The cardinality |Ap| is set to sp, where sp is determined in the
initialisation stage, and the policy ensures that

sp+1 ≤
⌈sp

2

⌉
and sM+1 = 1.
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Methodology: DP-BAI Policy
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Methodology: DP-BAI Policy

Dimensionality Reduction:

At the beginning of each phase p, suppose that

dp := dim(span{a(p−1)
i : i ∈ Ap}), where a(0)

i is initialised to be ai .

The agent chooses an arbitrary orthogonal basis Up = (u(p)
1 , . . . ,u(p)

dp
)

for span{a(p−1)
i : i ∈ Ap}, and obtains a new set of vectors

{a(p)
i : i ∈ Ap} via

a(p)
i := [a(p−1)

i ]Up ,

where [v ]Up denotes the coordinates of v with respect to Up.
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Methodology: DP-BAI Policy
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Methodology: DP-BAI Policy

Sampling strategy:

There are two cases in our sampling strategy. Recall that sp = |Ap|.

In case of dp >
√
sp (number of arms remaining is small), the agent

pulls each arm in Ap uniformly randomly for Θ
(

T
Msp

)
times.

In the case of dp ≤
√
sp (number of arms remaining is large), the

agent constructs a Max-Det collection Bp ⊂ Ap consisting of

|Bp| = dp arms, and pulls each arm i ∈ Bp for Θ
(

T
Mdp

)
many times.
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Methodology: DP-BAI Policy
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Methodology: DP-BAI Policy

Private empirical mean:

For each arm i ∈ Ap that was pulled at least once in phase p, the
agent computes the empirical means via

µ̂
(p)
i =

1

Ni ,Tp − Ni ,Tp−1

Ni,Tp∑
s=Ni,Tp−1

+1

Xi ,s ,

Subsequently the agent generates its private empirical mean µ̃
(p)
i via

µ̃
(p)
i = µ̂

(p)
i + ξ̃

(p)
i ,

where ξ̃
(p)
i ∼ Lap

(
1

(Ni,Tp−Ni,Tp−1
)ε

)
is independent of the arm pulls

and arm rewards.

Vincent Tan (NUS) Feb 20th, 2024 15 / 25



Methodology: DP-BAI Policy

Private empirical mean:

For each arm i ∈ Ap that was pulled at least once in phase p, the
agent computes the empirical means via

µ̂
(p)
i =

1

Ni ,Tp − Ni ,Tp−1

Ni,Tp∑
s=Ni,Tp−1

+1

Xi ,s ,

Subsequently the agent generates its private empirical mean µ̃
(p)
i via

µ̃
(p)
i = µ̂

(p)
i + ξ̃

(p)
i ,

where ξ̃
(p)
i ∼ Lap

(
1

(Ni,Tp−Ni,Tp−1
)ε

)
is independent of the arm pulls

and arm rewards.

Vincent Tan (NUS) Feb 20th, 2024 15 / 25



Methodology: DP-BAI Policy

Private empirical mean:
For i ∈ Ap that was not pulled in phase p, the agent computes its
corresponding private empirical mean via

µ̃
(p)
i =

∑
j∈Bp

αi ,j µ̃
(p)
j ,

where (αi ,j)j∈Bp is the unique set of coefficients such that

a(p)
i =

∑
j∈Bp

αi ,j a
(p)
j .
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Methodology: DP-BAI Policy
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Methodology: DP-BAI Policy

Recommendation rule:

At the end of phase p, the policy retains only the top sp+1 arms with
the largest private empirical means.

At the end of the Mth phase, the policy returns the only arm left in
AM+1 as the best arm.
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Theoretical Result: DP Constraint

Privacy Guarantee for DP-BAI

The DP-BAI policy with privacy and budget parameters (ε,T ) satisfies
the ε-DP constraint, i.e., for any pair of neighbouring x , x ′ ∈ X ,

PΠDP-BAI(ΠDP-BAI(x) ∈ S) ≤ eε PΠDP-BAI(ΠDP-BAI(x ′) ∈ S)

∀S ⊂ [K ]T+1.
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Theoretical Result: Hardness Quantity

Let ∆i := µi∗(v) − µi denote the sub-optimality gap of arm i ∈ [K ].

Let (l1, . . . , lK ) be a permutation of [K ] such that

∆l1 ≤ ∆l2 ≤ . . . ≤ ∆lK ,

and let ∆(i) := ∆li for all i ∈ [K ] be the ordered gaps.

The hardness of an instance v = ((ai )i∈[K ], (νi )i∈[K ],θ
∗, ε) is defined

as
H(v) := HBAI(v) + Hpri(v),

where

HBAI(v) := max
2≤i≤(d2∧K)

i

∆2
(i)

and Hpri(v) :=
1

ε
· max

2≤i≤(d2∧K)

i

∆(i)
.
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Theoretical Result: Upper Bound

Error Probability Guarantee for DP-BAI

Fix instance v and let i∗(v) denote the unique best arm. For all
sufficiently large T , the error probability of ΠDP-BAI with budget T and
privacy parameter ε satisfies

PΠDP-BAI
v (ÎT 6= i∗(v)) ≤ exp

(
− T

65M H

)
,

where PΠDP-BAI
v denotes the probability measure induced by ΠDP-BAI under

the instance v .

Because M = Θ(log d), the upper bound implies that

PΠDP-BAI
v (ÎT 6= i∗(v)) = exp

(
−Ω
( T

H log d

))
.
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Theoretical Result: Minimax Lower Bound

Defintion: Consistent policy

A policy π for fixed-budget BAI with the ε-DP constraint is said to be
consistent if

lim
T→+∞

Pπv
(
ÎT 6= i∗(v)

)
= 0, ∀ v ∈ P.

Minimax Lower Bound

Fix any β1, β2, β3 ∈ [0, 1] with β1 + β2 + β3 < 3 and a consistent policy
π.For all sufficiently large T , there exists an instance v ∈ P such that

Pπv
(
ÎT 6= i∗(v)

)
> exp

(
− Ω

(
T

(log d)β1(HBAI(v)β2 + Hpri(v)β3)

))
.
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Theoretical Result: Minimax Lower Bound

Lower bound =⇒ for any β ∈ [0, 1), there does not exist a consistent
policy π with an upper bound on its error probability assuming any
one of the following forms for all instances v ∈ P:

exp

(
−Ω

(
T

(log d)β(HBAI(v) + Hpri(v))

))
,

exp

(
−Ω

(
T

(log d)(HBAI(v)β + Hpri(v))

))
,

exp

(
−Ω

(
T

(log d)(HBAI(v) + Hpri(v)β)

))
.

In this sense, the dependencies of the upper bound on log d , HBAI(v),
and Hpri(v) are “tight”.
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Numerical Study

We conduct a numerical study on synthetic data, and compare
DP-BAI with Baseline, an algorithm which follows DP-BAI but
does not utilize our Max-Det collection idea.

In addition, we compare DP-BAI to the state-of-the-art
OD-LinBAI (Yang and Tan, 2022) algorithm for fixed-budget best
arm identification.

OD-LinBAI is a non-private algorithm and serves as an upper bound
in performance (in terms of the error probability) of our algorithm.

Also, we consider an ε-DP version of OD-LinBAI which we call
DP-OD by using a privatization idea of Shariff and Sheffet (2018).
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Numerical Study
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Figure 1: Comparison of DP-BAI to Baseline, OD-LinBAI and DP-OD for
different values of T .
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