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Style of Tutorial

Based on an upcoming monograph by myself and Lei Yu

Will cover classical stuff and more recent advances based on the speaker’s
knowledge and preferences

Will not be able to touch all bases, e.g., everything I will talk about is discrete

Will do some proof sketches (since this is a tutorial)

May get a bit technical (no apologies for that)

But will try to provide as much intuition as possible

Prerequisite: Information theory at the level of [Cover and Thomas, 2006]
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Measures of Information Among Random Variables

Given two random variables X ∈ X and Y ∈ Y with joint distribution πXY ,
how common are they?

One may conceive of the following measures of “common information”.

Pearson correlation coefficient

ρ(X;Y ) =
Cov(X,Y )√

Var(X)Var(Y )
∈ [−1, 1].

Mutual Information

Iπ(X;Y ) = E

[
log

πXY (X,Y )

πX(X)πY (Y )

]
= D(πXY ‖πXπY ).

As information theorists, we like operational interpretations

Wyner’s CI and Gäcs–Körner–Witsenhausen’s CI are the two archetypal
notions of information among RVs that admit operational interpretations.
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Wyner’s Common Information [Wyner, 1975]
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PXn|Mn

PY n|Mn

-

-

Mn

Xn

Y n

PXnY n

Mn is uniformly distributed overMn = [2nR] := {1, . . . , 2nR}
An (n,R)-synthesis code consists of

PXn|Mn
:Mn → Xn and PY n|Mn

:Mn → Yn.

The distribution induced by the code (PXn|Mn
, PY n|Mn

) is

PXnY n(xn, yn) :=
1

|Mn|
∑

m∈Mn

PXn|Mn
(xn|m)PY n|Mn

(yn|m)

Desideratum:
PXnY n ≈ πnXY (target distribution)
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Wyner’s Common Information [Wyner, 1975]
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The Common Information of Two Dependent 
Random Variables 
AARON D. WYNER, SENIOR MEMBER, IEEE 

Aktracr-The problem of finding a  meaningful measure of the 
“common information” or “common randomness’ of two discrete de-  
pendent  random variables x,Y is studied. The  quantity C(X; Y) is 
def ined as  the minbnum possible value of Z(X, Y, W)  where the minimum 
is taken over all distributions defining an  auxiliary random variable 
WE W, a  finite set, such that X, Y are conditionally independent  given 
W . The main result of the paper  is contained in two theorems which 
show that C(X, Y) is i) the minimum R,, such that a  sequence of inde- 
pendent  copies of (X,Y) can be  efficiently encoded  into three binary 
streams W,,Wl,W2 with rates Ro,Rl,R2, respectively, [Z& = 
H(X, Y)] and  Xrecovered from (W,, WI), and  Yrecovered from (W,, W,), 
i.e., W, is the common stream; ii) the minimum binary rate R of the 
common input to independent  processors that generate an  approximation 
to x, Y. 

1. INTRODUCTION 

I N THIS paper  we shall be  concerned with the problem 
of finding a  mean ingful measure of the “common 

randomness” or the “common information” of a  pair of 
dependent  discrete random variables X, Y. A good  way 
to begin our motivating discussion is by considering a  
single random variable, say U, which takes values in the 
set 49, where %  is a  finite set. Let U have probability 
distribution 

Pr (U = u} = Q(U), u  E 4!J. (1.1) 
Then  the “randomness” or “information” of U is usually 
taken as the entropy of U, denoted H(U), and defined by 

W -9 = - c  Q(u) log Q(u). (1.2) 
UEQ 

(All logarithms in this paper  will be  taken to the base 2.) 
This definition is mean ingful because of the following 
well known result. 

Let U” = (U,,U,;** ,U,) be a  random vector the com- 
ponents of which are generated by n  independent drawings 
of the random variable U. Let 

Q(“)(u) - Pr {U” = u} 3  UE%!!” 

be the resulting probability function. For n  = 1,2; * *, and  
E > 0, define the subset of % !” 

1  log, 
n 

Thus for II E T&s), Q(“)(U) is about 2-@(“)*‘). It follows 
that the cardinality of T&s) is no  more than 2@(“)+@. A 
result [l, equat ion (3.1.7)], which is a  simple consequence 
of the law of large numbers,  states that with E > 0  held 
fixed, 

Pr (U” E T,(n,s)} -+ 1, asn 4 co. (1.4) 

Manuscript received March 23, 1974;  revised September 20, 1974.  
The  author is with Bell Laboratories, Murray Hill, N.J. 07974.  

Thus the random vector U” has the property that for n 
sufficiently large, with arbitrarily high probability U” 
belongs to a  set with cardinality no  more than 2n(H(U)+E). 
Since the members  of this set can be  put in correspondence 
with the set of binary sequences of length n(H(U) + E), 
we have the following [ 1, theorem 3.1.11. 

Theorem 1.1: For any R > H(U), any 6  > 0, and  
n  = n(RJ) sufficiently large, there exists a  pair of mapp ings, 
fE: a” -+ {O,l}N and  fo: {O,l}N + a”, where N = [&I, 
such that 

Pr {fD ofECU”) # U”} I 6. 

The  mapp ings fE and  fD are called the “encoder” and  
“decoder,” respectively. Thus the essence of Theorem 1.1 
is that the random sequence U,, U,, * * . can be  encoded into 
a  binary sequence with about H(U) bits per symbol. 

Let us next turn to the case of two random variables 
X, Y with probability distribution 

Q(x,y) = Pr {X = x, Y = y}, x E x, y E SY (1.5) 

where !Z and  ?V are finite sets. We  first consider the special 
case where we can write X = (X’, V) and  Y = (Y’, V), 
where the random variables X’, Y’, V are independent.  Thus 
X and  Y are dependent  only through V. A natural measure 
of the “common randomness” (i.e., the randomness of the 
common part of X and  Y) is the randomness of V, viz. 
H(V). The  central question to which we address ourselves 
in this paper  is to what extent we can represent an  arbitrary 
pair of random variables X,Y by a  common segment 
(analogous to V) and  two “private” segments (analogous 
to X’ and  Y’). Before turning to our new results, let us 
briefly consider one  possible approach, which, it turns out, 
does not work. 

Let Q(x,JJ) be  arbitrary, and  let {(X,,Y,)}F=, be  in- 
dependent  drawings of (X, Y) (with distribution Q). Let f, 
and  g,, be  mapp ings of X” = (X1, * * * ,X,,) and  Y” = 
VI, * * * ,Y,), respectively, to the integers, and  let W , = 
f,(X”) and  IV, = g,,(Y”). Let us set E, = Pr {B’, #  IV,}, 
and  pn  = (l/n)H(W,). Let (&gJ,“=i be  a  sequence of pairs 
of mapp ings for which lim ,,, E, = 0. For this sequence, 
let pm = lim ,,, sup pn. Thus it is possible to extract 
about pea  bits per symbol of information by observing the 
sequence {X,}, and  to extract independently the approx- 
imately same information by observing the sequence {Y,}. 
Now set K(X;Y) = sup pm, where the supremum is taken 
over all sequences of pairs of mapp ings for which 
lim ,,, s,, = 0. The  quantity K(X;Y) m ight be  a  good  
candidate for “common information.” In the special case 
where X = (X’,V), Y = (Y’,V), X’, Y’, Vare independent,  
it is easy to show that K(X;Y) = H(V). However, in 

Authorized licensed use limited to: National University of Singapore. Downloaded on March 02,2021 at 00:54:46 UTC from IEEE Xplore.  Restrictions apply. 

Normalized relative entropy to measure the “distance” between PXnY n and πnXY

Theorem ([Wyner, 1975])

inf

{
R :

1

n
D(PXnY n‖πnXY )→ 0

}
= min
PWPX|WPY |W :PXY =πXY

I(XY ;W )

=: CW(πXY )

where CW(πXY ) is named Wyner’s Common Information.
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def ined as  the minbnum possible value of Z(X, Y, W)  where the minimum 
is taken over all distributions defining an  auxiliary random variable 
WE W, a  finite set, such that X, Y are conditionally independent  given 
W . The main result of the paper  is contained in two theorems which 
show that C(X, Y) is i) the minimum R,, such that a  sequence of inde- 
pendent  copies of (X,Y) can be  efficiently encoded  into three binary 
streams W,,Wl,W2 with rates Ro,Rl,R2, respectively, [Z& = 
H(X, Y)] and  Xrecovered from (W,, WI), and  Yrecovered from (W,, W,), 
i.e., W, is the common stream; ii) the minimum binary rate R of the 
common input to independent  processors that generate an  approximation 
to x, Y. 

1. INTRODUCTION 

I N THIS paper  we shall be  concerned with the problem 
of finding a  mean ingful measure of the “common 

randomness” or the “common information” of a  pair of 
dependent  discrete random variables X, Y. A good  way 
to begin our motivating discussion is by considering a  
single random variable, say U, which takes values in the 
set 49, where %  is a  finite set. Let U have probability 
distribution 

Pr (U = u} = Q(U), u  E 4!J. (1.1) 
Then  the “randomness” or “information” of U is usually 
taken as the entropy of U, denoted H(U), and defined by 

W -9 = - c  Q(u) log Q(u). (1.2) 
UEQ 

(All logarithms in this paper  will be  taken to the base 2.) 
This definition is mean ingful because of the following 
well known result. 

Let U” = (U,,U,;** ,U,) be a  random vector the com- 
ponents of which are generated by n  independent drawings 
of the random variable U. Let 

Q(“)(u) - Pr {U” = u} 3  UE%!!” 

be the resulting probability function. For n  = 1,2; * *, and  
E > 0, define the subset of % !” 

1  log, 
n 

Thus for II E T&s), Q(“)(U) is about 2-@(“)*‘). It follows 
that the cardinality of T&s) is no  more than 2@(“)+@. A 
result [l, equat ion (3.1.7)], which is a  simple consequence 
of the law of large numbers,  states that with E > 0  held 
fixed, 

Pr (U” E T,(n,s)} -+ 1, asn 4 co. (1.4) 
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Thus the random vector U” has the property that for n 
sufficiently large, with arbitrarily high probability U” 
belongs to a  set with cardinality no  more than 2n(H(U)+E). 
Since the members  of this set can be  put in correspondence 
with the set of binary sequences of length n(H(U) + E), 
we have the following [ 1, theorem 3.1.11. 

Theorem 1.1: For any R > H(U), any 6  > 0, and  
n  = n(RJ) sufficiently large, there exists a  pair of mapp ings, 
fE: a” -+ {O,l}N and  fo: {O,l}N + a”, where N = [&I, 
such that 

Pr {fD ofECU”) # U”} I 6. 

The  mapp ings fE and  fD are called the “encoder” and  
“decoder,” respectively. Thus the essence of Theorem 1.1 
is that the random sequence U,, U,, * * . can be  encoded into 
a  binary sequence with about H(U) bits per symbol. 

Let us next turn to the case of two random variables 
X, Y with probability distribution 

Q(x,y) = Pr {X = x, Y = y}, x E x, y E SY (1.5) 

where !Z and  ?V are finite sets. We  first consider the special 
case where we can write X = (X’, V) and  Y = (Y’, V), 
where the random variables X’, Y’, V are independent.  Thus 
X and  Y are dependent  only through V. A natural measure 
of the “common randomness” (i.e., the randomness of the 
common part of X and  Y) is the randomness of V, viz. 
H(V). The  central question to which we address ourselves 
in this paper  is to what extent we can represent an  arbitrary 
pair of random variables X,Y by a  common segment 
(analogous to V) and  two “private” segments (analogous 
to X’ and  Y’). Before turning to our new results, let us 
briefly consider one  possible approach, which, it turns out, 
does not work. 

Let Q(x,JJ) be  arbitrary, and  let {(X,,Y,)}F=, be  in- 
dependent  drawings of (X, Y) (with distribution Q). Let f, 
and  g,, be  mapp ings of X” = (X1, * * * ,X,,) and  Y” = 
VI, * * * ,Y,), respectively, to the integers, and  let W , = 
f,(X”) and  IV, = g,,(Y”). Let us set E, = Pr {B’, #  IV,}, 
and  pn  = (l/n)H(W,). Let (&gJ,“=i be  a  sequence of pairs 
of mapp ings for which lim ,,, E, = 0. For this sequence, 
let pm = lim ,,, sup pn. Thus it is possible to extract 
about pea  bits per symbol of information by observing the 
sequence {X,}, and  to extract independently the approx- 
imately same information by observing the sequence {Y,}. 
Now set K(X;Y) = sup pm, where the supremum is taken 
over all sequences of pairs of mapp ings for which 
lim ,,, s,, = 0. The  quantity K(X;Y) m ight be  a  good  
candidate for “common information.” In the special case 
where X = (X’,V), Y = (Y’,V), X’, Y’, Vare independent,  
it is easy to show that K(X;Y) = H(V). However, in 

Authorized licensed use limited to: National University of Singapore. Downloaded on March 02,2021 at 00:54:46 UTC from IEEE Xplore.  Restrictions apply. 

Normalized relative entropy to measure the “distance” between PXnY n and πnXY

Theorem ([Wyner, 1975])

inf

{
R :

1

n
D(PXnY n‖πnXY )→ 0

}

= min
PWPX|WPY |W :PXY =πXY

I(XY ;W )

=: CW(πXY )

where CW(πXY ) is named Wyner’s Common Information.
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W . The main result of the paper  is contained in two theorems which 
show that C(X, Y) is i) the minimum R,, such that a  sequence of inde- 
pendent  copies of (X,Y) can be  efficiently encoded  into three binary 
streams W,,Wl,W2 with rates Ro,Rl,R2, respectively, [Z& = 
H(X, Y)] and  Xrecovered from (W,, WI), and  Yrecovered from (W,, W,), 
i.e., W, is the common stream; ii) the minimum binary rate R of the 
common input to independent  processors that generate an  approximation 
to x, Y. 

1. INTRODUCTION 

I N THIS paper  we shall be  concerned with the problem 
of finding a  mean ingful measure of the “common 

randomness” or the “common information” of a  pair of 
dependent  discrete random variables X, Y. A good  way 
to begin our motivating discussion is by considering a  
single random variable, say U, which takes values in the 
set 49, where %  is a  finite set. Let U have probability 
distribution 

Pr (U = u} = Q(U), u  E 4!J. (1.1) 
Then  the “randomness” or “information” of U is usually 
taken as the entropy of U, denoted H(U), and defined by 

W -9 = - c  Q(u) log Q(u). (1.2) 
UEQ 

(All logarithms in this paper  will be  taken to the base 2.) 
This definition is mean ingful because of the following 
well known result. 

Let U” = (U,,U,;** ,U,) be a  random vector the com- 
ponents of which are generated by n  independent drawings 
of the random variable U. Let 

Q(“)(u) - Pr {U” = u} 3  UE%!!” 

be the resulting probability function. For n  = 1,2; * *, and  
E > 0, define the subset of % !” 

1  log, 
n 

Thus for II E T&s), Q(“)(U) is about 2-@(“)*‘). It follows 
that the cardinality of T&s) is no  more than 2@(“)+@. A 
result [l, equat ion (3.1.7)], which is a  simple consequence 
of the law of large numbers,  states that with E > 0  held 
fixed, 

Pr (U” E T,(n,s)} -+ 1, asn 4 co. (1.4) 
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Thus the random vector U” has the property that for n 
sufficiently large, with arbitrarily high probability U” 
belongs to a  set with cardinality no  more than 2n(H(U)+E). 
Since the members  of this set can be  put in correspondence 
with the set of binary sequences of length n(H(U) + E), 
we have the following [ 1, theorem 3.1.11. 

Theorem 1.1: For any R > H(U), any 6  > 0, and  
n  = n(RJ) sufficiently large, there exists a  pair of mapp ings, 
fE: a” -+ {O,l}N and  fo: {O,l}N + a”, where N = [&I, 
such that 

Pr {fD ofECU”) # U”} I 6. 

The  mapp ings fE and  fD are called the “encoder” and  
“decoder,” respectively. Thus the essence of Theorem 1.1 
is that the random sequence U,, U,, * * . can be  encoded into 
a  binary sequence with about H(U) bits per symbol. 

Let us next turn to the case of two random variables 
X, Y with probability distribution 

Q(x,y) = Pr {X = x, Y = y}, x E x, y E SY (1.5) 

where !Z and  ?V are finite sets. We  first consider the special 
case where we can write X = (X’, V) and  Y = (Y’, V), 
where the random variables X’, Y’, V are independent.  Thus 
X and  Y are dependent  only through V. A natural measure 
of the “common randomness” (i.e., the randomness of the 
common part of X and  Y) is the randomness of V, viz. 
H(V). The  central question to which we address ourselves 
in this paper  is to what extent we can represent an  arbitrary 
pair of random variables X,Y by a  common segment 
(analogous to V) and  two “private” segments (analogous 
to X’ and  Y’). Before turning to our new results, let us 
briefly consider one  possible approach, which, it turns out, 
does not work. 

Let Q(x,JJ) be  arbitrary, and  let {(X,,Y,)}F=, be  in- 
dependent  drawings of (X, Y) (with distribution Q). Let f, 
and  g,, be  mapp ings of X” = (X1, * * * ,X,,) and  Y” = 
VI, * * * ,Y,), respectively, to the integers, and  let W , = 
f,(X”) and  IV, = g,,(Y”). Let us set E, = Pr {B’, #  IV,}, 
and  pn  = (l/n)H(W,). Let (&gJ,“=i be  a  sequence of pairs 
of mapp ings for which lim ,,, E, = 0. For this sequence, 
let pm = lim ,,, sup pn. Thus it is possible to extract 
about pea  bits per symbol of information by observing the 
sequence {X,}, and  to extract independently the approx- 
imately same information by observing the sequence {Y,}. 
Now set K(X;Y) = sup pm, where the supremum is taken 
over all sequences of pairs of mapp ings for which 
lim ,,, s,, = 0. The  quantity K(X;Y) m ight be  a  good  
candidate for “common information.” In the special case 
where X = (X’,V), Y = (Y’,V), X’, Y’, Vare independent,  
it is easy to show that K(X;Y) = H(V). However, in 
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Normalized relative entropy to measure the “distance” between PXnY n and πnXY

Theorem ([Wyner, 1975])

inf

{
R :

1

n
D(PXnY n‖πnXY )→ 0

}
= min
PWPX|WPY |W :PXY =πXY

I(XY ;W )

=: CW(πXY )

where CW(πXY ) is named Wyner’s Common Information.

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 7 / 88



Sanity Check I

So Wyner said that a reasonable notion of common information is

CW(πXY ) = min
PWPX|WPY |W :PXY =πXY

I(XY ;W ).

Let’s test this on X = (X̃, V ) and Y = (Ỹ , V ) with X̃, Ỹ , V independent.

Intuitively, we should get H(V ) as the common information. Do we?

Take W = V , satisfies X −W − Y . Then

I(XY ;W ) = I(XY ;V ) ≤ H(V ) so far so good...
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Sanity Check II

Now comes the other part, i.e., to show CW(πXY ) ≥ H(V ).

Obviously X = (X̃, V ) and Y = (Ỹ , V ) and so

V −X −W − Y − V.

So V is a function of W and

I(X,Y ;W ) = I(X̃, Ỹ , V ;W,V ) ≥ H(V )

Minimize over X −W − Y so

CW(πXY ) ≥ H(V )
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I(X,Y ;W ) = I(X̃, Ỹ , V ;W,V ) ≥ H(V )

Minimize over X −W − Y so

CW(πXY ) ≥ H(V )

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 9 / 88



Sanity Check II

Now comes the other part, i.e., to show CW(πXY ) ≥ H(V ).

Obviously X = (X̃, V ) and Y = (Ỹ , V ) and so
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Proof Idea of the Achievability Part

Lemma (Soft-covering lemma [Wyner, 1975] [Cuff, 2012])
Let (U,W ) ∼ PUW have mutual information I(U ;W ). For any

R > I(U ;W ),

there exists a sequence of codebooks Cn = {wn(m) : m ∈ [2nR]} such that the
synthesized distribution

PUn(un) =
1

2nR

2nR∑
m=1

PnU |W (un|wn(m)) ∀n ∈ N

satisfies

lim
n→∞

1

n
D(PUn‖PnU ) = 0 and lim

n→∞
|PUn − PnU | = 0 (TV dist).

Also known as resolvability [Han and Verdú, 1993], [Hayashi, 2006],
[Hayashi, 2011] and [Yu and Tan, 2019c].
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Proof Idea of the Achievability Part

PnU

Pn
U|W (·|wn(1))

Pn
U|W (·|wn(2))

Pn
U|W (·|wn(3))

Pn
U|W (·|wn(M))

Figure: If M = 2nR and R > I(U ;W ), then 1
n
D(PUn‖PnU )→ 0.

Now take U = (X,Y ) ∼ πXY and note by Markovity X −W − Y that

PXn|Mn
(xn|m)PY n|Mn

(yn|m) = PUn|Wn(un|wn(m)) and I(W ;U) = I(W ;XY ).
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Alternative Interpretation of Wyner’s Common Information

(Xn, Y n)

f2

f0

f1

-

-

-

ϕ1

ϕ2
-M2

M0

6

?

-M1

-
Ŷ n

-
X̂n

An (n,R0, R1, R2)-Gray-Wyner code [Gray and Wyner, 1974] consists of

I Three encoders fi : Xn × Yn → [2nRi ] where i = 0, 1, 2;
I Two decoders ϕ1 : [2nR0 ]×[2nR1 ]→Xn and ϕ2 : [2nR0 ]×[2nR2 ]→Yn.

The probability of error of the code is

Pr
((
ϕ1(M0,M1), ϕ2(M0,M2)

)
6= (Xn, Y n)

)
.

where Mi = fi(X
n, Y n) for i = 0, 1, 2.

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 12 / 88



Alternative Interpretation of Wyner’s Common Information

(Xn, Y n)

f2

f0

f1

-

-

-

ϕ1

ϕ2
-M2

M0

6

?

-M1

-
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Alternative Interpretation of Wyner’s Common Information

Common information based on the Gray-Wyner system TGW(πXY ) for
(X,Y ) ∼ πXY

⇐⇒

Smallest common rate R0 such that for all ε > 0, there exists sequence of
(n,R0, R1, R2) Gray-Wyner codes {(f0,n, f1,n, f2,n, ϕ1,n, ϕ2,n)}∞n=1 such that

R0 +R1 +R2 ≤ H(XY ) + ε

and the probability of error vanishes.

Theorem ([Wyner, 1975])

TGW(πXY ) = CW(πXY )
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Example: Doubly Symmetric Binary Source (DSBS)

Consider a DSBS (X,Y ) ∈ {0, 1}2 which is defined for p ∈ (0, 1/2) by

πXY =

[
(1− p)/2 p/2
p/2 (1− p)/2

]

Interpretation in terms of X −W − Y

-

-��
��

�
��*HHH

HHHHj
1− p

1− p
p

p

01
2

11
2

0

1

X Y

1
2

11
2

�

� HH
HH

H
HHY ���

�����
1− a

1− a
a

a

0

1

0

1

X W

-

-��
��
�
��*HHH

HHHHj
1− a

1− a
a

a

0

1

Y

Here, a ∗ a = p and

a =
1−
√

1− 2p

2
∈ (0, 1/2).
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Example: DSBS
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Figure: Plots of Wyner’s common information for the DSBS in terms of p and a
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Motivation for Alternative Measures

Wyner used the normalized relative entropy, i.e.,

inf

{
R : lim

n→∞

D(PXnY n‖πnXY )

n
= 0

}
= CW(πXY ) = min

X−W−Y
I(W ;XY ).

What if we do not normalize?

T̃ (πXY ) := inf
{
R : lim

n→∞
D(PXnY n‖πnXY ) = 0

}
≥ CW(πXY ).

We get a stronger measure of dependence.

What if we want an even stronger measure of dependence?

Rényi common information for orders ≥ 1 [Yu and Tan, 2018]!

T1+s(πXY ) := inf

{
R : lim

n→∞

D1+s(PXnY n‖πnXY )

n
= 0

}
T̃1+s(πXY ) := inf

{
R : lim

n→∞
D1+s(PXnY n‖πnXY ) = 0

}
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Rényi Common Information

Rényi divergence

D1+s(P‖Q) :=
1

s
log

∑
x∈supp(P )

P (x)

(
P (x)

Q(x)

)s
s ∈ [−1,∞)

D∞(P‖Q) := log max
x∈supp(P )

P (x)

Q(x)
.

The Rényi divergence if monotonically non-decreasing, i.e.,

D1+s(P‖Q) ≤ D1+t(P‖Q) s ≤ t.

Hence, the Rényi common information is also non-decreasing, i.e.,

(normalized) T1+s(πXY ) ≤ T1+t(πXY ) s ≤ t.

and
(unnormalized) T̃1+s(πXY ) ≤ T̃1+t(πXY ) s ≤ t.

And for a fixed order 1 + s ∈ [0,∞],

T1+s(πXY ) ≤ T̃1+s(πXY ).
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Are we doing math for the sake of doing math?

The sceptic in you might wonder whether we are just doing math.

In fact not! We show in the sequel that

T̃∞(πXY ) = Exact Common Information of πXY .

Exact Common Information was introduced by [Kumar et al., 2014].

And it is through this unexpected connection that we show that

Exact Common Information of πXY > CW(πXY )

for some joint sources πXY .

But let’s soldier on and tackle the Rényi common information for now.
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Rényi Common Information: The Weaker Case

Let’s start with a simple exercise. Consider the case s ∈ (−1, 0] in which

T1+s(πXY ) ≤ CW(πXY )

Theorem ([Yu and Tan, 2018] [Yu and Tan, 2020a])
For Rényi orders in (0, 1] (i.e., s ∈ (−1, 0]),

T1+s(πXY ) = T̃1+s(πXY ) = CW(πXY ).

Our stepping stone... Total variation distance |P −Q| := 1
2

∑
x |P (x)−Q(x)|.

Theorem ([Yu and Tan, 2018])
For any ε ∈ [0, 1),

TTV
ε (πXY ) = CW(πXY ),

(Strong converse)

where TTV
ε (πXY ) is the minimum simulation rate required to ensure

lim sup
n→∞

|PXnY n − πnXY | ≤ ε.
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Total Variation Common Information

-

6

R

TV Dist.

CW(πXY )0

1

In fact, we have an exponential strong converse, i.e., if R < CW(πXY ),

|PXnY n − πnXY | ≥ 1− 2−nE for some E > 0.

Amenable to second-order?
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Total Variation Common Information

Achievability part follows from the soft-covering lemma.

If R > I(XY ;W ) then lim
n→∞

|PXnY n − πnXY | = 0.

Converse requires a very cool information spectrum, single-letterization idea
from [Oohama, 2018].

entropy

Article

Exponential Strong Converse for Source Coding with
Side Information at the Decoder †

Yasutada Oohama

Department of Communication Engineering and Informatics, University of Electro-Communications,
Tokyo 182-8585, Japan; oohama@uec.ac.jp; Tel.: +81-42-443-5358
† This paper is an extended version of our paper published in 2016 International Symposium on Information

Theory and Its Applications, Monterey, CA, USA, 6–9 November 2016; pp. 171–175.
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Abstract: We consider the rate distortion problem with side information at the decoder posed and
investigated by Wyner and Ziv. Using side information and encoded original data, the decoder must
reconstruct the original data with an arbitrary prescribed distortion level. The rate distortion region
indicating the trade-off between a data compression rate R and a prescribed distortion level ∆ was
determined by Wyner and Ziv. In this paper, we study the error probability of decoding for pairs
of (R, ∆) outside the rate distortion region. We evaluate the probability of decoding such that the
estimation of source outputs by the decoder has a distortion not exceeding a prescribed distortion
level ∆. We prove that, when (R, ∆) is outside the rate distortion region, this probability goes to
zero exponentially and derive an explicit lower bound of this exponent function. On the Wyner–Ziv
source coding problem the strong converse coding theorem has not been established yet. We prove
this as a simple corollary of our result.

Keywords: source coding with side information at the decoder; the rate distortion region; exponent
function outside the rate distortion region; strong converse theorem

1. Introduction

For single or multi terminal source coding systems, the converse coding theorems state that at
any data compression rates below the fundamental theoretical limit of the system the error probability
of decoding cannot go to zero when the block length n of the codes tends to infinity. On the other
hand, the strong converse theorems state that, at any transmission rates exceeding the fundamental
theoretical limit, the error probability of decoding must go to one when n tends to infinity. The former
converse theorems are sometimes called the weak converse theorems to distinguish them with the
strong converse theorems.

In this paper, we study the strong converse theorem for the rate distortion problem with side
information at the decoder posed and investigated by Wyner and Ziv [1]. We call the above source
coding system the Wyner and Ziv source coding system (the WZ system). The WZ system is shown in
Figure 1. In this figure, the WZ system corresponds to the case where the switch is close. In Figure 1,
the sequence (Xn, Yn) represents independent copies of a pair of dependent random variables (X, Y)
which take values in the finite sets X and Y , respectively. We assume that (X, Y) has a probability
distribution denoted by pXY. The encoder ϕ(n) outputs a binary sequence which appears at a rate
R bits per input symbol. The decoder function ψ(n) observes ϕ(n)(Xn) and Yn to output a sequence
Zn. The t-th component Zt of Zn for t = 1, 2, · · · , n take values in the finite reproduction alphabet Z .
Let d : X ×Z → [0, ∞) be an arbitrary distortion measure on X ×Z . The distortion between xn ∈ X n

and zn ∈ Zn is defined by

Entropy 2018, 20, 352; doi:10.3390/e20050352 www.mdpi.com/journal/entropy

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 22 / 88



Total Variation Common Information

Achievability part follows from the soft-covering lemma.

If R > I(XY ;W ) then lim
n→∞

|PXnY n − πnXY | = 0.

Converse requires a very cool information spectrum, single-letterization idea
from [Oohama, 2018].

entropy

Article

Exponential Strong Converse for Source Coding with
Side Information at the Decoder †

Yasutada Oohama

Department of Communication Engineering and Informatics, University of Electro-Communications,
Tokyo 182-8585, Japan; oohama@uec.ac.jp; Tel.: +81-42-443-5358
† This paper is an extended version of our paper published in 2016 International Symposium on Information

Theory and Its Applications, Monterey, CA, USA, 6–9 November 2016; pp. 171–175.

Received: 31 January 2018; Accepted: 20 April 2018; Published: 8 May 2018
����������
�������

Abstract: We consider the rate distortion problem with side information at the decoder posed and
investigated by Wyner and Ziv. Using side information and encoded original data, the decoder must
reconstruct the original data with an arbitrary prescribed distortion level. The rate distortion region
indicating the trade-off between a data compression rate R and a prescribed distortion level ∆ was
determined by Wyner and Ziv. In this paper, we study the error probability of decoding for pairs
of (R, ∆) outside the rate distortion region. We evaluate the probability of decoding such that the
estimation of source outputs by the decoder has a distortion not exceeding a prescribed distortion
level ∆. We prove that, when (R, ∆) is outside the rate distortion region, this probability goes to
zero exponentially and derive an explicit lower bound of this exponent function. On the Wyner–Ziv
source coding problem the strong converse coding theorem has not been established yet. We prove
this as a simple corollary of our result.

Keywords: source coding with side information at the decoder; the rate distortion region; exponent
function outside the rate distortion region; strong converse theorem

1. Introduction

For single or multi terminal source coding systems, the converse coding theorems state that at
any data compression rates below the fundamental theoretical limit of the system the error probability
of decoding cannot go to zero when the block length n of the codes tends to infinity. On the other
hand, the strong converse theorems state that, at any transmission rates exceeding the fundamental
theoretical limit, the error probability of decoding must go to one when n tends to infinity. The former
converse theorems are sometimes called the weak converse theorems to distinguish them with the
strong converse theorems.

In this paper, we study the strong converse theorem for the rate distortion problem with side
information at the decoder posed and investigated by Wyner and Ziv [1]. We call the above source
coding system the Wyner and Ziv source coding system (the WZ system). The WZ system is shown in
Figure 1. In this figure, the WZ system corresponds to the case where the switch is close. In Figure 1,
the sequence (Xn, Yn) represents independent copies of a pair of dependent random variables (X, Y)
which take values in the finite sets X and Y , respectively. We assume that (X, Y) has a probability
distribution denoted by pXY. The encoder ϕ(n) outputs a binary sequence which appears at a rate
R bits per input symbol. The decoder function ψ(n) observes ϕ(n)(Xn) and Yn to output a sequence
Zn. The t-th component Zt of Zn for t = 1, 2, · · · , n take values in the finite reproduction alphabet Z .
Let d : X ×Z → [0, ∞) be an arbitrary distortion measure on X ×Z . The distortion between xn ∈ X n

and zn ∈ Zn is defined by

Entropy 2018, 20, 352; doi:10.3390/e20050352 www.mdpi.com/journal/entropy

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 22 / 88



Going Back to Rényi CI: The Weaker Case s ∈ (−1, 0]

Because T1+s(πXY ) ≤ CW(πXY ), only have to prove the converse.

Main idea is a Pinsker-type inequality due to [Sason, 2016].
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 1, JANUARY 2016 23

On the Rényi Divergence, Joint Range of Relative
Entropies, and a Channel Coding Theorem

Igal Sason, Senior Member, IEEE

Abstract— This paper starts by considering the minimization
of the Rényi divergence subject to a constraint on the total
variation distance. Based on the solution of this optimization
problem, the exact locus of the points

(
D( Q‖P1), D( Q‖P2)

)

is determined when P1, P2, and Q are arbitrary probability
measures which are mutually absolutely continuous, and the total
variation distance between P1 and P2 is not below a given value.
It is further shown that all the points of this convex region are
attained by probability measures which are defined on a binary
alphabet. This characterization yields a geometric interpretation
of the minimal Chernoff information subject to a constraint on
the variational distance. This paper also derives an exponen-
tial upper bound on the performance of binary linear block
codes (or code ensembles) under maximum-likelihood decoding.
Its derivation relies on the Gallager bounding technique, and
it reproduces the Shulman–Feder bound as a special case. The
bound is expressed in terms of the Rényi divergence from the
normalized distance spectrum of the code (or the average distance
spectrum of the ensemble) to the binomially distributed distance
spectrum of the capacity-achieving ensemble of random block
codes. This exponential bound provides a quantitative measure
of the degradation in performance of binary linear block codes
(or code ensembles) as a function of the deviation of their distance
spectra from the binomial distribution. An efficient use of this
bound is considered.

Index Terms— Chernoff information, distance spectrum, error
exponent, maximum-likelihood decoding, relative entropy, Rényi
divergence, total variation distance.

I. INTRODUCTION

THE Rényi divergence, introduced in [30], has been
studied so far in various information-theoretic contexts

(and it has been actually used before it had a name [37]).
These include generalized cutoff rates and error exponents for
hypothesis testing ([1], [6], [38]), guessing moments ([2], [9]),
source and channel coding error exponents ([2], [12], [22],
[27], [37]), strong converse theorems for classes of net-
works [11], strong data processing theorems for discrete
memoryless channels [28], bounds for joint source-channel
coding [41], and one-shot bounds for information-theoretic
problems [46].

In [14], Gilardoni derived a Pinsker-type lower bound on
the Rényi divergence Dα(P‖Q) for α ∈ (0, 1). In view of
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the fact that this lower bound is not tight, especially when
the total variation distance |P − Q| is large, this paper starts
by considering the minimization of the Rényi divergence
Dα(P‖Q), for an arbitrary α > 0, subject to a given
(or minimal) value of the total variation distance. Note that
the minimization here is taken over all probability measures
with a total variation distance which is not below a given
value; this problem differs from the type of problems studied
in [3] and [24], in connection to the minimization of the
relative entropy D(P‖Q) subject to a minimal value of the
total variation distance with a fixed probability measure Q.
The solution of this problem generalizes the problem of
minimizing the relative entropy D(P‖Q) subject to a given
value of the total variation distance where the latter is a special
case with α = 1 (see [10], [13], [29]).

One possible way to deal with this problem stems
from the fact that the Rényi divergence is a one-to-one
transformation of the Hellinger divergence Hα(P‖Q) where
for α ∈ (0, 1) ∪ (1,∞):

Dα(P‖Q) = 1

α − 1
log
(

1 + (α − 1) Hα(P‖Q)
)

(1)

and Hα(P‖Q) is an f -divergence; since the total variation
distance is also an f -divergence, this problem can be viewed
as a minimization of an f -divergence subject to a constraint
on another f -divergence. The numerical optimization
of an f -divergence subject to simultaneous constraints
on fi -divergences (i = 1, . . . , L) was recently studied
in [15], where it has been shown that it suffices to restrict
attention to alphabets of cardinality L + 2. In fact, as shown
in [44, eq. (22)], a binary alphabet suffices if there is a
single constraint (i.e., L = 1) which is on the total variation
distance. In view of (1), the same conclusion also holds when
minimizing the Rényi divergence subject to a constraint on
the total variation distance. To set notation, the divergences
D(P‖Q), |P − Q|, Hα(P‖Q), Dα(P‖Q) are defined at
the end of this section, being consistent with the notation
in [35] and [45].

This paper treats this minimization problem of the Rényi
divergence in a different way. We first generalize the
analysis in [10], which was used for the minimization of
the relative entropy subject to a constraint on the variational
distance, for proving that it suffices to restrict attention
to probability measures which are defined on a binary
alphabet. Furthermore, the continuation of the analysis in
this paper relies on the Lagrange duality, and a solution of
the Karush-Kuhn-Tucker (KKT) equations while asserting
strong duality for the studied problem. The use of Lagrange
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Lemma
For any s ∈ (−1, 0],

inf
PX ,QX :|PX−QX |≥ε

D1+s(PX‖QX) = inf
q∈[0,1−ε]

d1+s(q + ε‖q)

and

inf
q∈[0,1−ε]

d1+s(q + ε‖q) ≥
[
min

{
1,

1 + s

s

}
log

1

1− ε
+

1

s
log 2

]+
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Main idea is a Pinsker-type inequality due to [Sason, 2016].
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Abstract— This paper starts by considering the minimization
of the Rényi divergence subject to a constraint on the total
variation distance. Based on the solution of this optimization
problem, the exact locus of the points

(
D( Q‖P1), D( Q‖P2)

)

is determined when P1, P2, and Q are arbitrary probability
measures which are mutually absolutely continuous, and the total
variation distance between P1 and P2 is not below a given value.
It is further shown that all the points of this convex region are
attained by probability measures which are defined on a binary
alphabet. This characterization yields a geometric interpretation
of the minimal Chernoff information subject to a constraint on
the variational distance. This paper also derives an exponen-
tial upper bound on the performance of binary linear block
codes (or code ensembles) under maximum-likelihood decoding.
Its derivation relies on the Gallager bounding technique, and
it reproduces the Shulman–Feder bound as a special case. The
bound is expressed in terms of the Rényi divergence from the
normalized distance spectrum of the code (or the average distance
spectrum of the ensemble) to the binomially distributed distance
spectrum of the capacity-achieving ensemble of random block
codes. This exponential bound provides a quantitative measure
of the degradation in performance of binary linear block codes
(or code ensembles) as a function of the deviation of their distance
spectra from the binomial distribution. An efficient use of this
bound is considered.

Index Terms— Chernoff information, distance spectrum, error
exponent, maximum-likelihood decoding, relative entropy, Rényi
divergence, total variation distance.

I. INTRODUCTION

THE Rényi divergence, introduced in [30], has been
studied so far in various information-theoretic contexts

(and it has been actually used before it had a name [37]).
These include generalized cutoff rates and error exponents for
hypothesis testing ([1], [6], [38]), guessing moments ([2], [9]),
source and channel coding error exponents ([2], [12], [22],
[27], [37]), strong converse theorems for classes of net-
works [11], strong data processing theorems for discrete
memoryless channels [28], bounds for joint source-channel
coding [41], and one-shot bounds for information-theoretic
problems [46].
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the fact that this lower bound is not tight, especially when
the total variation distance |P − Q| is large, this paper starts
by considering the minimization of the Rényi divergence
Dα(P‖Q), for an arbitrary α > 0, subject to a given
(or minimal) value of the total variation distance. Note that
the minimization here is taken over all probability measures
with a total variation distance which is not below a given
value; this problem differs from the type of problems studied
in [3] and [24], in connection to the minimization of the
relative entropy D(P‖Q) subject to a minimal value of the
total variation distance with a fixed probability measure Q.
The solution of this problem generalizes the problem of
minimizing the relative entropy D(P‖Q) subject to a given
value of the total variation distance where the latter is a special
case with α = 1 (see [10], [13], [29]).

One possible way to deal with this problem stems
from the fact that the Rényi divergence is a one-to-one
transformation of the Hellinger divergence Hα(P‖Q) where
for α ∈ (0, 1) ∪ (1,∞):

Dα(P‖Q) = 1

α − 1
log
(

1 + (α − 1) Hα(P‖Q)
)

(1)

and Hα(P‖Q) is an f -divergence; since the total variation
distance is also an f -divergence, this problem can be viewed
as a minimization of an f -divergence subject to a constraint
on another f -divergence. The numerical optimization
of an f -divergence subject to simultaneous constraints
on fi -divergences (i = 1, . . . , L) was recently studied
in [15], where it has been shown that it suffices to restrict
attention to alphabets of cardinality L + 2. In fact, as shown
in [44, eq. (22)], a binary alphabet suffices if there is a
single constraint (i.e., L = 1) which is on the total variation
distance. In view of (1), the same conclusion also holds when
minimizing the Rényi divergence subject to a constraint on
the total variation distance. To set notation, the divergences
D(P‖Q), |P − Q|, Hα(P‖Q), Dα(P‖Q) are defined at
the end of this section, being consistent with the notation
in [35] and [45].

This paper treats this minimization problem of the Rényi
divergence in a different way. We first generalize the
analysis in [10], which was used for the minimization of
the relative entropy subject to a constraint on the variational
distance, for proving that it suffices to restrict attention
to probability measures which are defined on a binary
alphabet. Furthermore, the continuation of the analysis in
this paper relies on the Lagrange duality, and a solution of
the Karush-Kuhn-Tucker (KKT) equations while asserting
strong duality for the studied problem. The use of Lagrange
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the fact that this lower bound is not tight, especially when
the total variation distance |P − Q| is large, this paper starts
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Dα(P‖Q), for an arbitrary α > 0, subject to a given
(or minimal) value of the total variation distance. Note that
the minimization here is taken over all probability measures
with a total variation distance which is not below a given
value; this problem differs from the type of problems studied
in [3] and [24], in connection to the minimization of the
relative entropy D(P‖Q) subject to a minimal value of the
total variation distance with a fixed probability measure Q.
The solution of this problem generalizes the problem of
minimizing the relative entropy D(P‖Q) subject to a given
value of the total variation distance where the latter is a special
case with α = 1 (see [10], [13], [29]).

One possible way to deal with this problem stems
from the fact that the Rényi divergence is a one-to-one
transformation of the Hellinger divergence Hα(P‖Q) where
for α ∈ (0, 1) ∪ (1,∞):

Dα(P‖Q) = 1

α − 1
log
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1 + (α − 1) Hα(P‖Q)
)

(1)

and Hα(P‖Q) is an f -divergence; since the total variation
distance is also an f -divergence, this problem can be viewed
as a minimization of an f -divergence subject to a constraint
on another f -divergence. The numerical optimization
of an f -divergence subject to simultaneous constraints
on fi -divergences (i = 1, . . . , L) was recently studied
in [15], where it has been shown that it suffices to restrict
attention to alphabets of cardinality L + 2. In fact, as shown
in [44, eq. (22)], a binary alphabet suffices if there is a
single constraint (i.e., L = 1) which is on the total variation
distance. In view of (1), the same conclusion also holds when
minimizing the Rényi divergence subject to a constraint on
the total variation distance. To set notation, the divergences
D(P‖Q), |P − Q|, Hα(P‖Q), Dα(P‖Q) are defined at
the end of this section, being consistent with the notation
in [35] and [45].

This paper treats this minimization problem of the Rényi
divergence in a different way. We first generalize the
analysis in [10], which was used for the minimization of
the relative entropy subject to a constraint on the variational
distance, for proving that it suffices to restrict attention
to probability measures which are defined on a binary
alphabet. Furthermore, the continuation of the analysis in
this paper relies on the Lagrange duality, and a solution of
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Going Back to Rényi CI: The Weaker Case s ∈ (−1, 0]

From [Sason, 2016], we have

inf
PX ,QX :|PX−QX |≥ε

D1+s(PX‖QX) ≥
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If R < CW(πXY ), exponential strong converse to TV CI says

|PXnY n − πnXY | ≥ 1− 2−nE for some E > 0.

Thus, if R < CW(πXY )

1

n
inf

PX ,QX :|PX−QX |≥ε
D1+s(PX‖QX) ≥ 1

n

[
min

{
1,

1 + s

s

}
nE +

1

s
log 2

]+
and the normalized Rényi divergence cannot vanish.
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Rényi CI: The Stronger Case s ∈ (0, 1] ∪ {∞}

For s ∈ (0, 1] ∪ {∞},
CW(πXY ) ≤ T1+s(πXY ).

We only discuss the case s =∞ in this tutorial.

For the other cases (i.e., s ≥ 1 finite), see our upcoming monograph.

Definition
The maximal cross entropy w.r.t. (X,Y ) ∼ πXY over couplings of (PX , PY ) is

H∞(PX , PY ‖πXY ) := max
QXY ∈C(PX ,PY )

∑
x,y

QXY (x, y) log
1

πXY (x, y)
,

where
C(PX , PY ) := {QXY ∈ P(X × Y) : QX = PX , QY = PY }.

H∞(πX , πY ‖πXY ) ≥ Hπ(X;Y ) with equality iff πXY = πXπY .
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Intuition for the Maximal Cross Entropy

Take a sequence of n-types T (n)
X ∈ Pn(X ) and T (n)

Y ∈ Pn(Y).

Let them converge as

T
(n)
X → PX and T

(n)
Y → PY .

What’s the minimum πnXY -probability of (xn, yn) where xn has type T (n)
X and

yn has type T (n)
Y , i.e.,

min
Txn=T

(n)
X ,Tyn=T

(n)
Y

πnXY (xn, yn)?

By type gymnastics,

min
Txn=T

(n)
X ,Tyn=T

(n)
Y

πnXY (xn, yn)
.
= exp

(
− nH∞(PX , PY ‖πXY )

)
.

So H∞(PX , PY ‖πXY ) is the exponential decay rate of this probability.
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By type gymnastics,

min
Txn=T

(n)
X ,Tyn=T

(n)
Y

πnXY (xn, yn)
.
= exp

(
− nH∞(PX , PY ‖πXY )

)
.

So H∞(PX , PY ‖πXY ) is the exponential decay rate of this probability.
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Upper and Lower Pseudo Common Informations

Definition
The upper pseudo-common information is

Γ∞(πXY ) := min
PWPX|WPY |W :
PXY =πXY

−H(XY |W ) + EPW

[
H∞(PX|W , PY |W ‖πXY )

]

Contrast to Wyner’s common information

CW(πXY ) = min
PWPX|WPY |W :
PXY =πXY

−H(XY |W ) +H(XY ).

Definition
The lower pseudo-common information is

Γ∞(πXY ) := inf
PWPX|WPY |W :
PXY =πXY

−H(XY |W )

+ inf
QWW ′∈C(PW ,PW )

EQWW ′

[
H∞(PX|W , PY |W ′‖πXY )

]
.
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Rényi Common Information of order∞

Theorem ([Yu and Tan, 2020a] [Yu and Tan, 2020c])
The order-∞ Rényi common information admits the following single-letter bounds

T̃∞(πXY ) ≥ T∞(πXY ) ≥ max {Γ∞(πXY ), CW(πXY )}

and
T∞(πXY ) ≤ T̃∞(πXY ) ≤ Γ∞(πXY ).

Achievability: Rényi soft-covering [Yu and Tan, 2019d] and truncated product
distributions.
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S

Product distribution

PnW (wn) =

n∏
i=1

PW (wi)
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S

Truncated product distribution

PWn(wn) ∝
( n∏
i=1

PW (wi)
)
1{wn ∈ S}
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Rényi Common Information of other orders ∈ (1,∞)?

Can obtain similar bounds [Yu and Tan, 2020a]

For the DSBS, for 1 + s ∈ [0, 2], after some calculations, we get

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.705

0.71

0.715

0.72

0.725

0.73

0.735

0.74

Rényi common information for the DSBS increases with 1 + s ∈ [1, 2]!

Does this have more profound implications?
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Exact Common Information?

In the distributed source simulation problem à la Wyner, we mandated that

1

n
D(PXnY n‖πnXY )→ 0.

What if we require

PXnY n = πnXY for some n ∈ N?

Using fixed-length block codes, we need rate limn→∞
1
n log |Wn| over

W ∈ Wn such that Xn −W − Y n! Potentially up to min{log |X |, log |Y|}.

In come [Kumar et al., 2014], who introduced

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 31 / 88



Exact Common Information?

In the distributed source simulation problem à la Wyner, we mandated that

1

n
D(PXnY n‖πnXY )→ 0.

What if we require

PXnY n = πnXY for some n ∈ N?

Using fixed-length block codes, we need rate limn→∞
1
n log |Wn| over

W ∈ Wn such that Xn −W − Y n! Potentially up to min{log |X |, log |Y|}.

In come [Kumar et al., 2014], who introduced

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 31 / 88



Exact Common Information?

In the distributed source simulation problem à la Wyner, we mandated that

1

n
D(PXnY n‖πnXY )→ 0.

What if we require

PXnY n = πnXY for some n ∈ N?

Using fixed-length block codes, we need rate limn→∞
1
n log |Wn| over

W ∈ Wn such that Xn −W − Y n! Potentially up to min{log |X |, log |Y|}.

In come [Kumar et al., 2014], who introduced

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 31 / 88



Exact Common Information?

In the distributed source simulation problem à la Wyner, we mandated that

1

n
D(PXnY n‖πnXY )→ 0.

What if we require

PXnY n = πnXY for some n ∈ N?

Using fixed-length block codes, we need rate limn→∞
1
n log |Wn| over

W ∈ Wn such that Xn −W − Y n! Potentially up to min{log |X |, log |Y|}.

In come [Kumar et al., 2014], who introduced

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 31 / 88



Exact Common Information

�
�
��

@
@
@R

PXn|Wn

PY n|Wn

-

-

Wn

Xn

Y n

A synthesis code (PWn , PXn|Wn
, PY n|Wn

)

Wn can be any (not necessarily uniform) discrete random variable

Distribution induced by the code is

PXnY n(xn, yn) :=
∑
w

PWn(w)PXn|Wn
(xn|w)PY n|Wn

(yn|w).

Require
PXnY n = πnXY for some n ∈ N.
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Exact Common Information
Asymptotic rate induced by the code is

lim
n→∞

H(Wn)

n

Compress Wn by a prefix-free, zero-error variable-length code (e.g.,
Shannon-Fano or Huffman code)

f :Wn → {0, 1}∗ :=
⋃
n≥1

{0, 1}n

Let the length of Wn be `(Wn).
Then, by Shannon’s zero-error compression theorem, the optimal expected
codeword length L(Wn) = E[`(Wn)] satisfies

H(Wn) ≤ L(Wn) < H(Wn) + 1

which implies that

lim
n→∞

L(Wn)

n
= lim
n→∞

H(Wn)

n
.
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Exact Common Information

Definition
The exact common information is defined as

TEx(πXY ) := inf

{
lim
n→∞

L(Wn)

n
: PXnY n = πnXY for some n ≥ 1

}

Theorem ([Kumar et al., 2014])

TEx(πXY ) = lim
n→∞

1

n
min

PWnPXn|WnPY n|Wn :

PXnY n=πn
XY

H(Wn).

Multi-letter characterization!

Exact CI ≥Wyner’s CI

Exact CI > Wyner’s CI?

Open problem posed by
[Kumar et al., 2014]
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Lemma 2. Given pX,Y (x, y), let W attain G(X ;Y ). Then for

w1 6= w2, the supports of pY |W (·|w1) and pY |W (·|w2) must

be different.

Lemma 2 yields the following cardinality bound.

Proposition 6. To compute G(X ;Y ) for a given pmf

pX,Y (x, y), it suffices to consider W with cardinality |W| ≤
2min(|X |,|Y|) − 1.

The following shows that the bound in Proposition 6 is tight.

Example 2 Let (X,Y ) be a SBES(0.1). Since pX,Y (0, 1) =
pX,Y (1, 0) = 0, the markovity constraint X → W → Y
implies that the only W with |W| = 2 is W = X ; see

[5], Appendix A. Hence, G(X ;Y ) ≤ H(X) = 1. However,

H(Y ) = H(0.1) + 0.1 < 1. Thus, the optimal W ∗ that

achieves G(X ;Y ) requires |W∗| = 3, making the bound in

Proposition 6 tight.

The following is another extremal property of G(X ;Y ).

Proposition 7. Suppose W attains G(X ;Y ). Consider a non-

empty subset W ′ ⊆ W . Let (X ′, Y ′) be defined by the pmf

pX′,Y ′(x, y) =
∑

w∈W′

pW (w)
∑

w′∈W′ pW (w′)
pX|W (x|w)pY |W (y |w).

Then H(X ′;Y ′) = H(W |W ∈ W ′).

We now use the above results to analytically compute

G(X ;Y ) for binary alphabets, i.e., when |X | = |Y| = 2.

Proposition 8. Let X ∼ Bern(p) and

pY |X =

[

α β
ᾱ β̄

]

for some α, β ∈ [0, 1], ᾱ = 1− α, β̄ = 1− β. Let W achieve

G(X ;Y ). Then either

pY |W =

[

α 1
ᾱ 0

]

, pW |X =

[

1 β̄/ᾱ
0 1− β̄/ᾱ

]

, and

W ∼ Bern
(

p̄
(

1− β̄/ᾱ
)

)

,

or

pY |W =

[

0 β
1 β̄

]

, pW |X =

[

1− α/β 0
α/β 1

]

, and

W ∼ Bern
(

p(1− α/β)
)

.

The proof of this proposition uses Lemma 2 as well as

the cardinality bound |W| ≤ 3 derived from Proposition 6. It

considers all possible cases for W and finally concludes that

|W| = 2 suffices.

Remark (Relationship to machine learning): Computing

G(X ;Y ) is closely related to positive matrix factorization,

which has applications in recommendation systems, e.g., [10].

In that problem, one wishes to factorize a matrix M with

positive entries in the form M = AB, where A and B are

both matrices with positive entries. Indeed, finding a Markov

chain X → W → Y for a fixed pX,Y is akin to factorizing

pY |X = pY |W pW |X and numerical methods such as in [11]

can be used. Rather than minimizing the number of factors

|W| as is done in positive matrix factorization literature, it may

be more meaningful for recommendation systems to minimize

the entropy of the factors W . Computing G(X ;Y ) for large

alphabets appears to be very difficult, however.

V. CONCLUSION

We introduced the notion of exact common information for

correlated random variables (X,Y ) and bounded it by the

common entropy quantity G(X ;Y ). For the exact generation

of a 2-DMS, we established a multiletter characterization of

the exact common information rate. While this multiletter

characterization is in general greater than or equal to the

Wyner common information, we showed that they are equal

for the SBES. The main open question is whether the exact

common information rate has a single letter characterization in

general. Is it always equal to the Wyner common information?

Is there an example 2-DMS for which the exact common

information rate is strictly larger than the Wyner common

information? It would also be interesting to further explore

the application to machine learning.

We also remark that our setting and results can be readily

extended to the coordination via communication problem [12].

In the arXiv version of this paper, we show that for the SBES,

the set of achievable rates for exact coordination coincides

with that for coordination under the total variation constraint.
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Surprising Equivalence: ∞-Rényi CI and Exact CI

Theorem ([Yu and Tan, 2020c])

For a bivariate source πXY on a finite alphabet,

TEx(πXY ) = T̃∞(πXY ).

Rényi Order
1 + s
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Proof of =⇒ Part of Equivalence Theorem

Lemma ([Kumar et al., 2014], [Vellambi and Kliewer, 2016])
∃ rate-R∞-Rényi CI code =⇒ ∃ rate-R Exact CI code

∃ rate-R∞-Rényi CI code

D∞(PXnY n‖πnXY ) < ε =⇒ PXnY n (xn, yn) < 2επnXY (xn, yn)

Define

P̂XnY n (xn, yn) :=
2επnXY (xn, yn)− PXnY n (xn, yn)

2ε − 1
,

then obviously, P̂XnY n (xn, yn) is a valid distribution.

Hence πnXY can be written as a mixture distribution

πnXY (xn, yn) = 2−εPXnY n (xn, yn) +
(
1− 2−ε

)
P̂XnY n (xn, yn)
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Proof of =⇒ Part of Equivalence Theorem

πnXY (xn, yn) = 2−εPXnY n (xn, yn) +
(
1− 2−ε

)
P̂XnY n (xn, yn)

A time-sharing variable-length scheme:

I The encoder first generates U ∼ Bern(2−ε), and transmits it to two generators
using 1 bit

I If U = 1, then the encoder and two generators use the rate-R∞-Rényi CI code
to generate PXnY n

I If U = 0, then the encoder generates (Xn, Y n) ∼ P̂XnY n , and compresses it
with rate log(|X ||Y|) to generate P̂XnY n

The induced distribution is πnXY exactly

The total code rate

≤ 1

n
+ 2−εR+

(
1− 2−ε

)
log(|X ||Y|)→ R

as n→∞, ε→ 0
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Proof of⇐= Part of Equivalence Theorem

Lemma
∃ rate-R∞-Rényi CI code ⇐= ∃ rate-R Exact CI code

Let {(PWk
, PXk|Wk

, PY k|Wk
)}k∈N be rate-R exact CI codes such that

lim
k→∞

1

k
H(PWk

) = R

but Wk is not uniform.
Simulate Wn

k using two Rényi source resolvability codes!

�
�
���

@
@
@@R

f(·)

f(·)

-

-

≈Wn
k

≈Wn
k

PnXk|Wk

PnY k|Wk

-

-

M

≈ Xnk

≈ Y nk
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Proof of⇐= Part of Equivalence Theorem

(Wk)n

A(n)
ε (PWk

)
f(·) : Uniform

f(·) : Uniform

M ∼ Unif[1 : 2nkR]

Succeed in the sense of D∞(Pf(M)‖PnWk
)→ 0 if [Yu and Tan, 2019d]

R >
1

k
H(PWk

)
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Proof of⇐= Part of Equivalence Theorem

�
�
���

@
@
@@R

f(·)

f(·)

-

-

≈Wn
k

≈Wn
k

PnXk|Wk

PnY k|Wk

-

-

M

≈ Xnk

≈ Y nk

For the given stochastic kernel (channel) PnXk|Wk
PnY k|Wk

,

PnW −→ PnXk|Wk
PnY k|Wk

−→ πknXY

Pf(M) −→ PnXk|Wk
PnY k|Wk

−→ PXknY kn

By the data processing inequality (DPI) for Rényi divergence,

D∞(PXknY kn‖πknXY ) ≤ D∞(Pf(M)‖PnWk
)
n→∞−→ 0
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Combining with Single-Letter Bounds from Rényi CI

Theorem ([Yu and Tan, 2020c])
For (X,Y ) ∼ πXY on a finite alphabet,

Γ∞(πXY ) ≤ TEx(πXY ) = T̃∞(πXY ) ≤ Γ∞(πXY ).

Gone from a multi-letter expression by [Kumar et al., 2014]

lim
n→∞

1

n
min

PWnPXn|WnPY n|Wn :

PXnY n=πn
XY

H(Wn)

to single-letter bounds.

Presumably the bounds are more amenable to numerical evaluation?
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Revisiting the DBSS
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Theorem (Evaluation of Upper and Lower Bounds for DSBS(p))

For a DSBS (X,Y ) ∼ DSBS(p) with crossover probability p ∈ (0, 1/2),

T̃∞(πXY ) = TEx(πXY )

= −2h(a)− (1− 2a) log

[
1

2

(
a2 + (1− a)2

)]
− 2a log [a(1− a)] ,

where a := 1−
√
1−2p
2 ∈ (0, 12 ) and h(a) := −a log a− (1− a) log(1− a).
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Numerical Results — DSBS
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TEx(DSBS(p)) > CW(DSBS(p)) ∀ p ∈ (0, 1/2).

Answers the open question in [Kumar et al., 2014].
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Why is Exact CI (or∞-Rényi CI) > Wyner’s CI?

T (n)
ε (PX)

T (n)
ε (PY )

T (n)
ε (PXY )
@
@

@
@I

Wyner’s common information requires

PXnY n(xn, yn)

πnXY (xn, yn)
= 1 + o(1) for almost all (xn, yn) ∈ T (n)

ε (πXY )
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When is Exact CI (or∞-Rényi CI) = Wyner’s CI?

T (n)
ε (PX)

T (n)
ε (PY )

T (n)
ε (PXY )
@
@@I

T (n)
ε (PXW |wn)× T (n)

ε (PYW |wn)

?

Sufficient Condition [Vellambi and Kliewer, 2016]

H(X|W = w)H(Y |W = w) = 0 for each w

⇐⇒ C(PX|W , PY |W ) = {PX|WPY |W }

⇐⇒ T (n)
ε (PXY ) ≈

⋃
wn∈C

(
T (n)
ε (PXW |wn)× T (n)

ε (PYW |wn)
)

⇐⇒ T (n)
ε (PXY ) ≈ supp(PXnY n) (No type overflow)
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When Exact CI (or∞-Rényi CI) = Wyner’s CI
Example for Sufficient Condition:

H(X|W = w)H(Y |W = w) = 0 ∀w

Symmetric Binary Erasure Source (SBES)
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X W Y

p1

p1

1− p1

1− p1

p2

p2

1− p2

1− p2

1

1
2

1
2

(1− p1) (1− p2) = 1− p.

The Exact CI is equal to Wyner’s CI and

T̃∞(πXY ) = TExact(πXY ) =CWyner(πXY ) =

{
1 p ≤ 1

2

H(p) p > 1
2

.
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Channel Synthesis

Given πXY = πXπY |X consider the following task:

-
Xn ∼ πnX PWn|XnKn

-
Wn

PY n|WnKn
-

Y n ∼ PY n|Xn
?

Kn ∼ Unif[2nR0 ] (Shared Key)

?

Goal: Ensure that

PXnY n ≈ πnXY (Approximate) or PXnY n = πnXY (Exact).

Equivalently,

PY n|Xn ≈ πnY |X (Approximate) or PY n|Xn = πnY |X (Exact).

Known as channel synthesis [Cuff, 2012].
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Approximate Channel Synthesis

Consider approximate channel synthesis under TV criterion, i.e.,

lim
n→∞

|PXnY n − πnXY | = 0.

Let the region of achievable rate pairs (R,R0) be RW(πXY ).

When R0 = 0, problem reduces to approximate distributed source simulation

-
Xn ∼ πnX PWn|Xn -

Wn ∈ [2nR]
PY n|Wn

-
Y n

so the minimum compression rate is Wyner’s common information

R∗(R0 = 0|πXY ) = CW(πXY )

When R0 =∞,
R∗(R0 =∞|πXY ) = Iπ(X;Y )
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Approximate Channel Synthesis

It was shown in [Cuff, 2012] that

RW(πXY ) :=
⋃

PWPX|WPY |W :
PXY =πXY

{
(R,R0) :

R ≥ I(X;W )

R+R0 ≥ I(XY ;W )

}
.

R

H(Y |X)

R0

I(X;Y )r r?��	 -

6

CW(πXY )

RW(πXY )
r
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Exact Channel Synthesis

-
Xn ∼ πnX PWn|XnKn

-
Wn

PY n|WnKn
-

Y n
?

Kn ∼ Unif[2nR0 ] (Shared Key)

?

Now, similarly to exact common information, we demand that

PXnY n = πnXY for some large enough n ∈ N

but just like exact CI, we allow variable-length codes for Wn.

If R0 =∞, [Bennett et al., 2002] showed that the minimum R is I(X;Y ).

Best tradeoff between R and R0 in the non-extremal cases considered by
[Yu and Tan, 2020b].
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Doubly Binary Symmetric Sources
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CW = T1 = T̃1

u uTEx = T̃∞

Exact channel synthesis region is strictly smaller than RW(πXY )
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Nonnegative Matrix Factorization

Given a matrix M ∈ Rm×k+ , find U ∈ Rm×r+ and V ∈ Rr×k+ such that

M ≈ UV or M = UV.

Many applications. See [Cichocki et al., 2009] or [Gillis, 2020].

Dimensionality reduction:

m M

k

m

r

U

k

r V

Only interested in exact factorization.

What is the minimum r to achieve exact factorization? Is this connected to
information theory?
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Nonnegative Rank

Definition

The nonnegative rank of M ∈ Rm×k+ , denoted as rank+(M), is the smallest
integer r such that

M =

r∑
w=1

uwv
>
w

for some nonnegative vectors uw ∈ Rm+ and vw ∈ Rk+.

Obviously, rank(M) ≤ rank+(M)

Gap can be large. Fix {a1, . . . , am} ⊂ R and consider distance matrix

M =

rank(M) ≤ 3. [Beasley and Laffey, 2009] showed rank+(M) = Ω(logm).
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Wyner’s CI for Normalized Nonnegative Matrices

Let M ∈ Rr×k+ be a nonnegative matrix.

We may define

πXY (x, y) :=
Mx,y

‖M‖1
(x, y) ∈ [m]× [k] = X × Y.

A discrete r.v. W ∈ W is a seed for πXY , or equivalently M, if

X −W − Y.

Every NMF of
M =

∑
w

uwv
>
w

induces a seed W for M.

Wyner’s common information for M is

CW(M) := CW(πXY ).
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Playing With Definitions

Theorem ([Jain et al., 2013], [Braun and Pokutta, 2013])

CW(M) ≤ log rank+(M).

Proof.
Let M have an optimal NMF M =

∑
w uwv

>
w . Define seed W as

PW |XY (w|x, y) =


[uw]x[vw]y
Mx,y

Mx,y > 0

arbitrary Mx,y = 0

.

By Bayes rule,

PXY |W (x, y|w) =
[uw]x[vw]y∑

x′,y′ [uw]x′ [vw]y′
(x, y) ∈ X × Y.

So, X −W − Y and

CW(M) ≤ IP (XY ;W ) ≤ H(W ) ≤ log |W| = log rank+(M).
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Gap Between CW(M) and log rank+(M)?

Consider the diagonal matrix

M =
1∑m
j=1 2j


21 0 0 . . . 0
0 22 0 . . . 0
0 0 23 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2m

 .

rank+(M) = m

But

CW(M) ≤ Hπ(XY ) = H(πX)

= H

(
2∑

j∈[m] 2j
,

22∑
j∈[m] 2j

, . . . ,
2m∑
j∈[m] 2j

)

= −
∑
i∈[m]

2i∑
j∈[m] 2j

log

(
2i∑

j∈[m] 2j

)
≤ 2 ∀m ∈ N.

Gap can be arbitrarily large.
Is the relation between CW(M) and log rank+(M) fundamental?
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])

Let M ∈ Rm×k+ be such that ‖M‖1 =
∑
x,yMx,y = 1. For any ε, δ > 0, if

n ≥ n0(ε, δ,m, k, CW(M)) is sufficiently large, there exists Mε,δ,n ∈ Rm
n×kn

+ with∥∥M⊗n −Mε,δ,n

∥∥
1
≤ δ.

and
lim
ε↓0

lim
n→∞

1

n
log rank+(Mε,δ,n) = CW(M).

Normalized logarithm of the nonnegative rank of an `1-perturbed version of
M⊗n for large enough n.

TV common information = Wyner’s common information [Cuff, 2012].
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Gács–Körner–Witsenhausen’s System

X Y
f

f(X)

g
g(Y)

(X,Y) ∼ PnXY : a pair of correlated sources

Define one-sided ε-GKW common information:

TX (ε) := lim inf
n→∞

max
f,g:P[f(X)6=g(Y)]≤ε

1

n
H (f (X))

TY (ε) := lim inf
n→∞

max
f,g:P[f(X)6=g(Y)]≤ε

1

n
H (g (Y))
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Gács–Körner–Witsenhausen’s CI

Theorem ([Gács and Körner, 1973])

lim
ε↓0

TX (ε) = lim
ε↓0

TY (ε) = CGKW (X;Y ) ,

where
CGKW (X;Y ) := max

f,g:f(X)=g(Y )
H (f (X))

CGKW (X;Y ) called Gács–Körner–Witsenhausen’s (GKW’s) CI

Abridged version of GKW’s system as in [Csiszár and Narayan, 2000]

Other interesting operational interpretations in [Yu and Tan, 2019a]
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Undesirable Properties of GKW’s CI

Fact: Gács–Körner–Witsenhausen’s CI = 0 for Gaussian sources and doubly
symmetric binary sources (DSBSes)

More unfortunately, we cannot extract even one pair of identical bits from
(X,Y), if (X,Y) is jointly Gaussian or if (X,Y) is a DSBS.

How to measure “common information” for this case?

Literally, “common information”⇐⇒ “correlated bits”

A Variant of CI: What is the maximal possible correlation of a pair of bits
that can be extracted from X,Y individually?

Coined the binary decision problem [Witsenhausen, 1975],
the noninteractive correlation distillation (NICD) problem [Mossel et al., 2006],
the noninteractive binary simulation problem
[Kamath and Anantharam, 2016]
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Doubly Symmetric Binary Source (DSBS)

In this section, we only consider the DSBS

PXY =

1 + ρ

4

1− ρ
4

1− ρ
4

1 + ρ

4


with correlation ρ ∈ (0, 1), and

(X,Y) ∼ PnXY

If you are interested in other sources, please refer to
[Ahlswede and Gács, 1976, Borell, 1985,
Carlen and Cordero-Erausquin, 2009, Mossel and Neeman, 2015,
Beigi and Nair, 2016, Yu et al., 2021, Yu, 2021b]...
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Non-Interactive Correlation Distillation

X Y

f(X) ∼ Bern(a) g(Y) ∼ Bern(b)

max P(f(X) = g(Y))

DSBS(ρ)

max P(f(X) = g(Y) = 1)or equivalently,

f g
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Non-Interactive Correlation Distillation

Formally, for a, b ∈ [0, 1], define the Forward Joint Probability as

Γ
(n)

(a, b) := max
f,g:{0,1}n→{0,1}:P(f(X)=1)≤a,

P(g(Y)=1)≤b

P (f(X) = g(Y) = 1)

= max
A,B⊆{0,1}n:Pn

X(A)≤a,
Pn

Y (B)≤b

PnXY (A×B) , (f = 1A, g = 1B)

Define the Reverse Joint Probability as

Γ(n) (a, b) := min
A,B⊆{0,1}n:Pn

X(A)≥a,
Pn

Y (B)≥b

PnXY (A×B)

For a = M
2n , b = N

2n (with integers M,N ), the “inequalities” in the constraints
can be replaced by “equalities”

Equivalence:
Γ
(∞)

(1− a, b) = b− Γ(∞) (a, b) ,

where Γ
(∞)

, Γ(∞) denote the pointwise limits of Γ
(n)

, Γ(n) as n→∞.
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Asymptotic Regimes and Exponents

Asymptotic cases as n→∞

Central Limit (CL) regime: a = 2−α, b = 2−β are fixed

(Forward and Reverse) CL Exponents: For α, β ∈ (0,∞),

Θ
(n)
CL (α, β) := − log Γ

(n)
(

2−α, 2−β
)

Θ
(n)
CL (α, β) := − log Γ(n)

(
2−α, 2−β

)

Large Deviation (LD) regime: a = 2−nα, b = 2−nβ are exponentially small

(Forward and Reverse) LD Exponents: For α, β ∈ (0, 1),

Θ
(n)
LD (α, β) := − 1

n
log Γ

(n)
(

2−nα, 2−nβ
)

Θ
(n)
LD (α, β) := − 1

n
log Γ(n)

(
2−nα, 2−nβ

)

Denote Θ
(∞)
CL , Θ

(∞)

CL , Θ
(∞)
LD , Θ

(∞)

LD , as the pointwise limits as n→∞.
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Achievability: Hamming Subcubes

000

100

011010

001

111110

101

An (n− k)-subcube Cn−k is a set of x with k components fixed
I Special case Cn−1: e.g., {1} × {0, 1}n−1 (Indicator x 7→ x1 called a dictator

function)
Case of a = b = 2−k: A = B = Cn−k (identical) =⇒

PnXY (A×B) = PXY (1, 1)k =

(
1 + ρ

4

)k
A = 1−B = Cn−k (anti-symmetric) =⇒

PnXY (A×B) = PXY (1, 0)k =

(
1− ρ

4

)k
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Achievability: Hamming Balls (CL Regime)

000

100

011010

001

111110

101

Hamming Ball: Br (0) := {x : dH(x,0) ≤ r} ⇐⇒ {x :
∑n
i=1 xi ≤ r}

CL regime: Choose A = Brn (0) , B = Bsn (0) with
rn = n

2 + λ
√
n

2 , sn = n
2 + µ

√
n

2 where λ, µ ∈ R

By the univariate and multivariate CL theorems,

PnX (A)→ Φ (λ) , PnY (B)→ Φ (µ) , PnXY (A×B)→ Φρ (λ, µ)

where Φ is the CDF of the standard Gaussian, and Φρ(·, ·) is the CDF of the

zero-mean bivariate Gaussian with covariance matrix
[
1 ρ
ρ 1

]
.
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Achievability: Hamming Balls (CL Regime)

Achievable CL probabilities:

Γ
(∞)

(a, b) ≥ Λρ (a, b) (by concentric balls)

I Bivariate normal copula (or Gaussian quadrant probability function):

Λρ (a, b) := Φρ
(
Φ−1(a),Φ−1(b)

)

By equivalence of forward and reverse joint probabilities,

Γ(∞) (a, b) ≤ Λ−ρ (a, b) (by anti-concentric balls)

I Λ−ρ (a, b) is attained by anti-concentric balls A = Brn (0) , B = Bsn (1)

Considering exponents,

Θ
(∞)
CL (α, β) ≤ ΘCL (α, β) Θ

(∞)

CL (α, β) ≥ ΘCL (α, β) .

I Exponents of Λρ and Λ−ρ:

ΘCL (α, β) := − log Λρ
(
e−α, e−β

)
, ΘCL (α, β) := − log Λ−ρ

(
e−α, e−β

)
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Achievability: Hamming Spheres (LD Regime)

000

100

011010

001

111110

101

Hamming Sphere: For r ∈ [0 : n], Sr (0) := {x : dH(x,0) = r} ⇐⇒
{x :

∑n
i=1 xi = r}

It can be regarded as a type class with type
(
λ, λ̄

)
in Hamming space, where

λ := r
n and λ̄ := 1− λ

LD regime: Choose A = Srn (0) , B = Ssn (0) with rn = λn, sn = µn where
λ, µ ∈ [0, 1]

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 73 / 88



Achievability: Hamming Spheres (LD Regime)

000

100

011010

001

111110

101

Hamming Sphere: For r ∈ [0 : n], Sr (0) := {x : dH(x,0) = r} ⇐⇒
{x :

∑n
i=1 xi = r}

It can be regarded as a type class with type
(
λ, λ̄

)
in Hamming space, where

λ := r
n and λ̄ := 1− λ

LD regime: Choose A = Srn (0) , B = Ssn (0) with rn = λn, sn = µn where
λ, µ ∈ [0, 1]

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 73 / 88



Achievability: Hamming Spheres (LD Regime)

000

100

011010

001

111110

101

Hamming Sphere: For r ∈ [0 : n], Sr (0) := {x : dH(x,0) = r} ⇐⇒
{x :

∑n
i=1 xi = r}

It can be regarded as a type class with type
(
λ, λ̄

)
in Hamming space, where

λ := r
n and λ̄ := 1− λ

LD regime: Choose A = Srn (0) , B = Ssn (0) with rn = λn, sn = µn where
λ, µ ∈ [0, 1]

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 73 / 88



Achievability: Hamming Spheres (LD Regime)

000

100

011010

001

111110

101

Hamming Sphere: For r ∈ [0 : n], Sr (0) := {x : dH(x,0) = r} ⇐⇒
{x :

∑n
i=1 xi = r}

It can be regarded as a type class with type
(
λ, λ̄

)
in Hamming space, where

λ := r
n and λ̄ := 1− λ

LD regime: Choose A = Srn (0) , B = Ssn (0) with rn = λn, sn = µn where
λ, µ ∈ [0, 1]

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 73 / 88



Achievability: Hamming Spheres (LD Regime)

By LD theory (or Sanov’s theorem),

− 1

n
logPnX (A)→ D

((
λ, λ̄

)
‖PX

)
= 1−H2 (λ)

− 1

n
logPnY (B)→ D ((µ, µ̄) ‖PY ) = 1−H2 (µ)

− 1

n
logPnXY (A×B)→ D

((
λ, λ̄

)
, (µ, µ̄) ‖PXY

)
,

where the minimum-relative-entropy over couplings of (QX , QY ) is

D (QX , QY ‖PXY ) := min
QXY ∈C(QX ,QY )

D (QXY ‖PXY )

with C (QX , QY ) := {QXY with marginals QX , QY } denoting the coupling set of
QX and QY .
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Achievability: Hamming Spheres (LD Regime)

[Ordentlich et al., 2020] proved...

Optimizing D (QX , QY ‖PXY ) over feasible QX :=
(
λ, λ̄

)
, QY := (µ, µ̄) =⇒

Θ
(∞)
LD (α, β) ≤ ΘLD (α, β) := min

QX ,QY :D(QX‖PX)≥α,
D(QY ‖PY )≥β

D (QX , QY ‖PXY ),

Θ
(∞)

LD (α, β) ≥ ΘLD (α, β) := max
QX ,QY :D(QX‖PX)≤α,

D(QY ‖PY )≤β

D (QX , QY ‖PXY ).

Attained by concentric and anti-concentric Hamming spheres or balls

[Ordentlich et al., 2020] conjectured...

Conjecture (Ordentlich–Polyanskiy–Shayevitz (2020))
For the DSBS and α, β ∈ (0, 1),

Θ
(∞)
LD (α, β)

?
= ΘLD (α, β), Θ

(∞)

LD (α, β)
?
= ΘLD (α, β).
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Exponents induced by Hamming Spheres for ρ = 0.9

Remark that ΘLD looks concave! Has implications for OPS’ conjecture.
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Exponents induced by Hamming Spheres for ρ = 0.9

Remark that ΘLD looks convex! Has implications for OPS’ conjecture.
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Comparison: Hamming Subcubes vs. Hamming Balls

Regime Central Limit Large Deviation
a, b fixed and large a, b fixed but small a, b exp. small a, b

Subcubes Better Worse Worse
Balls Worse Better Better

For large a, b, subcubes are better; for small a, b, balls are better
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Natural Questions on Optimality I

Question: Are Hamming subcubes optimal for large a, b (CL regime)?

Are subcubes optimal for a = b ∈
{

1
2 ,

1
4

}
?

Mossel’s mean-1/4 stability problem
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Natural Questions on Optimality II

Question: Are Hamming balls optimal for exp. small a, b (LD regime)?

Ordentlich–Polyanskiy–Shayevitz’s conjecture

Excerpt from [Ordentlich et al., 2020]...
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Natural Questions on Optimality II

Question: Are Hamming balls optimal for exp. small a, b (LD regime)?

Ordentlich–Polyanskiy–Shayevitz’s conjecture

Excerpt from [Ordentlich et al., 2020]...
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Converse for a = b = 1
2 : Subcubes/dictators optimal?

Confirmed positively by Witsenhausen (1975) using maximal correlation

The (Hirschfeld–Gebelein–Rényi) maximal correlation

ρm(X;Y ) := sup
f,g

ρ(f(X); g(Y )),

I ρ(U ;V ) := E[UV ]√
var[U ]var[V ]

is the Pearson correlation coefficient

I the supremum is taken over all real-valued functions with finite variances

Tensorization: For (X,Y) = {(Xi, Yi)}ni=1 i.i.d.,

ρm(X;Y) = ρm(X;Y ).

Data Processing Inequality (DPI): For a Markov chain U −X − Y − V ,

ρm(U ;V ) ≤ ρm(X;Y ).

For binary X,Y , ρm(X;Y ) = |ρ(X;Y )|.
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Converse for a = b = 1
2 : Subcubes/dictators optimal?

Theorem ([Witsenhausen, 1975])
Let ā = 1− a. For any A,B with PnX(A) = a, PnY (B) = b,

ab − ρ
√
aābb̄ ≤ PnXY (A×B) ≤ ab + ρ

√
aābb̄.

Proof: Setting U = 1A (X) , V = 1B (Y), we have U −X−Y − V

|PnXY (A×B)− ab|
√
aā
√
bb̄

= |ρ(U ;V )|

= ρm(U ;V ) [Binary]

≤ ρm(X;Y) [DPI]

= ρm(X;Y ) [Tensorization]

= ρ

.
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aābb̄ ≤ PnXY (A×B) ≤ ab + ρ

√
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Converse for a = b = 1
2 : Subcubes/dictators optimal?

Important Consequence:

For a = b = 1/2,
1− ρ

4
≤ PnXY (A×B) ≤ 1 + ρ

4
.

Upper bound is attained by

f (x) = g (x) = xi

and lower bound by
f (x) = −g (x) = xi.

Dictators (subcubes) are optimal for a = b = 1/2, i.e.,

Γ
(n)
(

1

2
,

1

2

)
=

1 + ρ

4
Γ(n)

(
1

2
,

1

2

)
=

1− ρ
4
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Converse for a = b = 1
4 : Are subcubes optimal?

—– Mossel’s mean-1/4 stability problem

Confirmed positively by [Yu and Tan, 2021] using Fourier analysis

Fourier coefficients of f : {0, 1}n → {0, 1} are

f̂ (y) :=
1

2n

∑
x

f (x) (−1)
〈x,y〉

Fourier expansion of f is

f (x) =
∑
y

f̂ (y) (−1)
〈x,y〉

Define the k-degree Fourier weight as

Wk[f ] :=
∑
|y|=k

f̂ (y)
2

where |y| denotes the Hamming weight of y.
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Converse for a = b = 1
4 : Are subcubes optimal?

Properties: For a Boolean f with mean a,

W0[f ] = a2
n∑
k=0

Wk[f ] = a

and

P (f(X) = f(Y) = 1) =

n∑
k=0

Wk[f ]ρk.

Linear Programming bound on W1[f ] [Fu et al., 2001, Yu and Tan, 2019b]:

W1[f ] ≤ ϕ (a) :=

{
2a (
√
a− a) 0 ≤ a ≤ 1/4

a/2 1/4 < a ≤ 1/2

Fact (Cauchy–Schwarz inequality):

P (f(X) = g(Y) = 1) ≤ max {P (f(X) = f(Y) = 1) ,P (g(X) = g(Y) = 1)}

Suffices to consider identical Boolean functions for Γ
(n)

(a, a).
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Converse for a = b = 1
4 : Are subcubes optimal?

Theorem ([Yu and Tan, 2021])

Γ
(n)

(a, a) ≤ a2 + ρϕ (a) + ρ2
(
a− a2 − ϕ (a)

)
.

Consequence: For a = 1/4, the upper bound reduces to
(
1+ρ
4

)2
=⇒

Γ
(n)
(

1

4
,

1

4

)
=

(
1 + ρ

4

)2

for n ≥ 2, attained by (n− 2)-subcubes!

Resolution of forward part of Mossel’s mean-1/4 stability problem!

However, Γ(n)
(
1
4 ,

1
4

)
is still open!
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Converse for LD: Strong Small-Set Expansion Theorem

Theorem (Strong Small-Set Expansion [Yu et al., 2021, Yu, 2021b])

For any n ≥ 1 and α, β ∈ (0, 1],

Θ
(n)
LD (α, β) ≥ L [ΘLD] (α, β) and

Θ
(n)

LD (α, β) ≤ U
[
ΘLD

]
(α, β) ,

where L [f ] and U [f ] respectively denote the lower convex and upper concave
envelopes of a function f .

Recall: ΘLD (α, β) ,ΘLD (α, β) are achieved by spheres/balls

Consequence: Time-sharing certain Hamming spheres/balls is optimal in LD
regime! —– A weaker version of OPS’s conjecture
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Converse for LD: Strong Small-Set Expansion Theorem

Lemma ([Yu, 2021a])

ΘLD is convex, and ΘLD is concave.

=⇒ L [ΘLD] = ΘLD and U
[
ΘLD

]
= ΘLD.

Substituting these to Strong SSE Theorem =⇒

OPS’s conjecture is true:
Balls/spheres are optimal in LD regime!

Note:

I The limiting cases as ρ→ 0 or 1 were previously proven in
[Ordentlich et al., 2020].

I The special case with α = β was previously proven in
[Kirshner and Samorodnitsky, 2021].
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