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Style of Tutorial

@ Based on an upcoming monograph by myself and Lei Yu

@ Will cover classical stuff and more recent advances based on the speaker’s
knowledge and preferences

@ Will not be able to touch all bases, e.g., everything | will talk about is discrete
@ Will do some proof sketches (since this is a tutorial)

@ May get a bit technical (no apologies for that)

@ But will try to provide as much intuition as possible

@ Prerequisite: Information theory at the level of [Cover and Thomas, 2006]
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Outline

0 Introduction: Measures of Information Among Two Random Variables
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Measures of Information Among Random Variables

@ Given two random variables X € X and Y € Y with joint distribution 7xv,
how common are they?

@ One may conceive of the following measures of “common information”.
@ Pearson correlation coefficient

Cov(X,Y)

Y ) = e X Var(Y)

€ [-1,1).
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@ Pearson correlation coefficient

oY) = —=EY) g,
Var(X)Var(Y)
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Measures of Information Among Random Variables

Given two random variables X € X and Y € Y with joint distribution 7xy,
how common are they?

One may conceive of the following measures of “common information”.

Pearson correlation coefficient

Cov(X,Y)
Var(X)Var(Y)

p(X;Y) = € [-1,1).

Mutual Information

7TX)/(X, Y)

L(XGY) =B los =2 0

= D(ﬂ'XYnT()(ﬂ'y).

As information theorists, we like operational interpretations
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Measures of Information Among Random Variables

@ Given two random variables X € X and Y € Y with joint distribution 7xv,
how common are they?

@ One may conceive of the following measures of “common information”.
@ Pearson correlation coefficient

oY) = —=EY) g,
Var(X)Var(Y)
@ Mutual Information
. o 71’_)()/()(7 Y) _
I‘n'(X7Y) =E IOg WX(X)WY(Y) - D(ﬂ—XYHﬂ-Xﬂ—Y)'

@ As information theorists, we like operational interpretations

@ Wyner’s Cl and Gacs—Kérner-Witsenhausen’s Cl are the two archetypal
notions of information among RVs that admit operational interpretations.
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@ Introduction: Measures of Information Among Two Random Variables
e Wyner’s Common Information

e Rényi Common Information

@ Exact Common Information

e Approximate and Exact Channel Synthesis

@ Nonnegative Matrix Factorization and Nonnegative Rank

0 Gécs—Korner—Witsenhausen’s Common Information

e Non-Interactive Correlation Distillation

«O0>» «Fr «EHr» «FE)r» EFl= QX



Wyner's Common Information [Wyner, 1975]
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Wyner's Common Information [Wyner, 1975]

Pxnin,
P Y |M,

@ M, is uniformly distributed over M,, = [2"/] := {1,...,2"%}
@ An (n, R)-synthesis code consists of

RX”MLV : Mn — X" and PY'H‘]\,[” : Mn — Y™
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Wyner's Common Information [Wyner, 1975]

Pxnyn

Y’!L
Pyn | My,

@ M, is uniformly distributed over M,, = [2"/] := {1,...,2"%}
@ An (n, R)-synthesis code consists of

RX”’ML, : ./\/ln — X" and Pyrn‘]\,[n : Mn — Y™
@ The distribution induced by the code (PXH‘MH,PYV,L‘MW) is

1
M

Z Pxniag, (2" |m) Pynar, (" |m)
meMy,

Pxnyn (2", y") =
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Wyner's Common Information [Wyner, 1975]

)

Pxnin,

Pxnyn

n

!

Pyn ‘]\,]”
@ M, is uniformly distributed over M,, = [2"/] := {1,...,2"%}
@ An (n, R)-synthesis code consists of
RX”’ML, : ./\/ln — X" and Pyrn‘]\,[n : Mn — Y™
@ The distribution induced by the code (PXH‘MH,PYV,L‘MW) is

1
M

Pxnyn(x",y") := > Pxujar, (2" |m) Py, (™ m)

. meM,,
@ Desideratum:

Pxnyn =~ %y (target distribution)
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Wyner's Common Information [Wyner, 1975]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-21, NO. 2, MARCH 1975 163

The Common Information of Two Dependent
Random Variables

AARON D. WYNER, SENIOR MEMBER, IEEE
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Wyner's Common Information [Wyner, 1975]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-21, NO. 2, MARCH 1975 163

The Common Information of Two Dependent
Random Variables

AARON D. WYNER, SENIOR MEMBER, IEEE

Normalized relative entropy to measure the “distance” between Pxny» and 7'y

Theorem ([Wyner, 1975])

1
inf {R : —=D(Pxnyn||m%y) — O}

n
= min I(XY; W)
Pw Px\w Py|\w: Pxy=nxy

=: Cw(ﬁxy)

where Cw (7 xy) is named Wyner's Common Information.
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Sanity Check |

@ So Wyner said that a reasonable notion of common information is

Cw(ﬂxy) = min I(XY; W)

Pw Px\w Py \w: Pxy=mxy
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Sanity Check |

@ So Wyner said that a reasonable notion of common information is
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Sanity Check |

@ So Wyner said that a reasonable notion of common information is

Cw(ﬂxy) = min I(XY; W)

Pw Px\w Py |w: Pxy=nxy

@ Let'stestthison X = (X,V)andY = (Y, V) with X, Y,V independent.
@ Intuitively, we should get H (V) as the common information. Do we?
@ Take W =V, satisfies X — W — Y. Then

I(XY;W)=I(XY;V)< H(V) so far so good...

i

>N
(VS

Vincent Y. F. Tan (NUS) Common Information EASIT 2021

8/88



Sanity Check Il

@ Now comes the other part, i.e., to show Cw (7xy) > H(V).
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Sanity Check Il

@ Now comes the other part, i.e., to show Cw (7xy) > H(V).

@ Obviously X = (X,V)andY = (Y, V) and so

V-X-W-Y-V.

Vincent Y. F. Tan (NUS) Common Information

EASIT 2021

9/88



Sanity Check Il

@ Now comes the other part, i.e., to show Cw (7xy) > H(V).
@ Obviously X = (X,V)andY = (Y, V) and so

V-X-W-Y-V.
@ So V is a function of W and

I(X,Y;W) = I(X,Y,V;W,V) > H(V)
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Sanity Check Il

@ Now comes the other part, i.e., to show Cw (7xy) > H(V).
@ Obviously X = (X,V)andY = (Y, V) and so
V-X-W-Y-V.
@ So V is a function of W and
I(X,)Y;W)=I(X,Y,V;W,V) > H(V)

@ Minimize over X — W —Y so

Cw(nxy) > H(V) v
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Proof Idea of the Achievability Part

Lemma (Soft-covering lemma [Wyner, 1975] [Cuff, 2012])
Let (U, W) ~ Pyw have mutual information I(U;W). For any

R>I(U; W),

there exists a sequence of codebooks C,, = {w™(m) : m € [2"*]} such that the
synthesized distribution

2nR

n 1 n n n
Pyn(u®) = 5og > Phw(utlw™(m))  ¥neN

m=1
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Proof Idea of the Achievability Part

Lemma (Soft-covering lemma [Wyner, 1975] [Cuff, 2012])
Let (U, W) ~ Pyyw have mutual information I(U;W). For any

R > I(U;W),

there exists a sequence of codebooks C,, = {w™(m) : m € [2"*]} such that the
synthesized distribution

271R

n 1 n n n
Pyn(u ):ﬁzpmw(u lw"(m))  VneN

m=1
satisfies

1
lim ~D(Pyn||Pg) =0 and  lim |Pyn — P§| =0 (TV dist).
n o0

n—,oo n
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Proof Idea of the Achievability Part

Lemma (Soft-covering lemma [Wyner, 1975] [Cuff, 2012])
Let (U, W) ~ Pyyw have mutual information I(U;W). For any

R> I({U;W),

there exists a sequence of codebooks C,, = {w™(m) : m € [2"*]} such that the
synthesized distribution

271R

n 1 n n n
Pyn(u ):ﬁzpmw(u lw"(m))  VneN

m=1
satisfies

1
lim ~D(Pyn||Pg) =0 and  lim |Pyn — P§| =0 (TV dist).
n o0

n—,oo n

Also known as resolvability [Han and Verdu, 1993], [Hayashi, 2006],
[Hayashi, 2011] and [Yu and Tan, 2019c].
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Proof Idea of the Achievability Part

Figure: If M = 2" and R > I(U; W), then 2 D(Pyn||P{}) — 0.
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Proof Idea of the Achievability Part

Figure: If M = 2" and R > I(U; W), then 2 D(Pyn||P{}) — 0.

Now take U = (X,Y) ~ mxy and note by Markovity X — W — Y that
Pxniag, (2" |m) Pynjar, (y" Im) = Pynjwn (u"|w™(m)) and I(W;U) = I(W; XY).
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Alternative Interpretation of Wyner's Common Information

(X ym)

Vincent Y. F. Tan (NUS)

M X"
fl ! ©1

M,
fo 0

M yn
f2 2 V2

Common Information EASIT 2021

12/88



Alternative Interpretation of Wyner's Common Information

M X"
fl ! ©1
(X", Ym) M,
fo
M yn
f2 2 V2

@ An (n, Ry, Ry, R2)-Gray-Wyner code [Gray and Wyner, 1974] consists of
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fo 0

M yn
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@ An (n, Ry, Ry, R2)-Gray-Wyner code [Gray and Wyner, 1974] consists of
» Three encoders f; : X™ x Y™ — [2"%] where i = 0,1, 2;
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Alternative Interpretation of Wyner's Common Information

(X ym)

M

fl ! P1
M,

fo :
M.

fo 2 V2

X’n.

@ An (n, Ry, Ry, R2)-Gray-Wyner code [Gray and Wyner, 1974] consists of

» Three encoders f; : X™ x Y™ — [2"%] where i = 0,1, 2;

» Two decoders ¢ : [2"70] x [2"F1] = X™ and o : [2"F0] x [27 2] — Y,
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Alternative Interpretation of Wyner's Common Information

(X ym)

M X"
fl ! ©1

M,
fo 0

M yn
f2 2 2

@ An (n, Ry, Ry, R2)-Gray-Wyner code [Gray and Wyner, 1974] consists of

» Three encoders f; : X™ x Y™ — [2"%] where i = 0,1, 2;
» Two decoders ¢ : [2"70] x [2"F1] = X™ and o : [2"F0] x [27 2] — Y,

@ The probability of error of the code is

Pr ((p1(Mo, M), p2(Mo, M2)) # (X", Y™)).
where M; = f;(X™,Y") fori =0,1,2.
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Alternative Interpretation of Wyner's Common Information

Common information based on the Gray-Wyner system Taw (7xy ) for
(X, Y) ~ TXY

—

Smallest common rate Ry such that for all e > 0, there exists sequence of
(TL, Ry, R, Rz) Gray-Wyner codes {(fo,na fl,na f2,n7 Pl,ns 802,7;)}%0:1 such that

R0+R1+R2§H(XY)+6

and the probability of error vanishes.
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Alternative Interpretation of Wyner's Common Information

Common information based on the Gray-Wyner system Taw (7xy ) for
(X, Y) ~ TXY

—

Smallest common rate Ry such that for all e > 0, there exists sequence of
(n, Ry, R1, R2) Gray-Wyner codes {(fo,n, f1,n, f2.n: @11, P2.n) For, Such that

Ro+ Ri+ Ry < H(XY)+6
and the probability of error vanishes.
Theorem ([Wyner, 1975])

Tow(mxy) = Cw(rxy)
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Example: Doubly Symmetric Binary Source (DSBS)

@ Consider a DSBS (X,Y) € {0, 1}? which is defined for p € (0,1/2) by

ree — |(L=D)/2 p/2
Y p/2  (1=p)/2
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Example: Doubly Symmetric Binary Source (DSBS)

@ Consider a DSBS (X,Y) € {0, 1}? which is defined for p € (0,1/2) by

N [(l—p)ﬂ p/2
xr p/2 (1=p)/2

@ Interpretationintermsof X — W —-Y

i

N[—=
—
|
=
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Example: Doubly Symmetric Binary Source (DSBS)

@ Consider a DSBS (X,Y) € {0, 1}? which is defined for p € (0,1/2) by

- :{(1—11)/2 /2 }
* p/2  (1-p)/2

@ Interpretationintermsof X — W —-Y

X Y X w
%O 1—p O %0 1—a 0 l—a 0
v a a
3 1 1—p 1 31 1-a 1™ -1
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Example: Doubly Symmetric Binary Source (DSBS)

@ Consider a DSBS (X,Y) € {0, 1}? which is defined for p € (0,1/2) by

- :{(1—11)/2 /2 }
* p/2  (1-p)/2

@ Interpretationintermsof X — W —-Y

X ) Y X ) )

1 - P 1 —a —a
200 20>< ><
1 A 1

3 1 1—p 1 2 1 1—a l—a

@ Here, a*xa =pand
1—/1-2
a= P e0,1/2
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Example: DSBS

Plot of Cyyner against a Plot of Cwyner against p

1

0.8 0.8

. 0.6 . 0.6
g g
= =

O o4 O o4

0.2 0.2

0 0

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
a p

Figure: Plots of Wyner’s common information for the DSBS in terms of p and a

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 15/88



@ Introduction: Measures of Information Among Two Random Variables
e Wyner's Common Information

e Rényi Common Information

@ Exact Common Information

e Approximate and Exact Channel Synthesis

@ Nonnegative Matrix Factorization and Nonnegative Rank

0 Gécs—Korner—Witsenhausen’s Common Information

e Non-Interactive Correlation Distillation
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Motivation for Alternative Measures

@ Wyner used the normalized relative entropy, i.e.,

. e DPxnyn|miy) o o .
inf {R : nh_)ngo — = 0 =Cwl(rxy) = XEHMI/H_YI(W’XY)‘
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Motivation for Alternative Measures

@ Wyner used the normalized relative entropy, i.e.,

D P n n n
inf {R . lim M = o} = Cw(mxy) = min I(W;XY).

n—o00 n
@ What if we do not normalize?

T(ny) = inf{R : lim D(Pxnyn

n—oo

Ty ) = 0} > Cw(mxy).

We get a stronger measure of dependence.
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T(ny) = inf{R : lim D(Pxnyn
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Motivation for Alternative Measures

@ Wyner used the normalized relative entropy, i.e.,

D(Pxnyn
inf{R: tim 2P0y miey)

n—o00 n
@ What if we do not normalize?

T(ny) = inf{R : lim D(Pxnyn

n—oo

Ty ) = 0} > Cw(mxy).

We get a stronger measure of dependence.
@ What if we want an even stronger measure of dependence?
@ Rényi common information for orders > 1 [Yu and Tan, 2018]!

D s P n n n
T1+s<7TXY) = inf {R: lim —F ( Xy HWXY) :0}

n—oQ n

Ti4s(mxy) = inf {R : nh_)n;o Dy s(Pxnyn||mhy) = O}
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Rényi Common Information

@ Rényi divergence
1
DiPlQ =21 Y PGl
z€supp(P)

3 P(x)
Doo(P[|Q) :=log  max Q(z)
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Rényi Common Information

@ Rényi divergence

DiPlQ =21 Y PGl

x€supp(P)

3 P(x)
Doo(P[|Q) :=log  max Q(z)

@ The Rényi divergence if monotonically non-decreasing, i.e.,

Di+o(P|Q) < Dio(PIQ) s <t.
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Rényi Common Information

@ Rényi divergence

DiPlQ =21 Y PGl

x€supp(P)

3 P(x)
Doo(P[|Q) :=log  max Q(z)

@ The Rényi divergence if monotonically non-decreasing, i.e.,
D14.(PQ) < Diu(PQ)  s<t.

@ Hence, the Rényi common information is also non-decreasing, i.e.,

(normalized)  Tiys(rxy) < Tipe(mxy) s<t

and
(unnormalized) T1+3(7Txy) < T1+t(7rxy) s < t.
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Rényi Common Information

@ Rényi divergence

DiPlQ =21 Y PGl

z€supp(P)

3 P(x)
Doo(P[|Q) :=log  max Q(z)

@ The Rényi divergence if monotonically non-decreasing, i.e.,
D14.(PQ) < Diu(PQ)  s<t.

@ Hence, the Rényi common information is also non-decreasing, i.e.,

(normalized)  Tiys(rxy) < Tipe(mxy) s<t

and
(unnormalized) T1+3(7Txy) < T1+t(7rxy) s < t.

@ And for a fixed order 1 + s € [0, o0],

Tiis(mxy) < Tiys(mxy).
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Are we doing math for the sake of doing math?
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@ The sceptic in you might wonder whether we are just doing math.
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Are we doing math for the sake of doing math?

@ The sceptic in you might wonder whether we are just doing math.
@ In fact not! We show in the sequel that

T (mxy) = Exact Common Information of wxy-.

Exact Common Information was introduced by [Kumar et al., 2014].
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@ The sceptic in you might wonder whether we are just doing math.
@ In fact not! We show in the sequel that

T (mxy) = Exact Common Information of wxy-.

Exact Common Information was introduced by [Kumar et al., 2014].
@ And it is through this unexpected connection that we show that

Exact Common Information of mxy > Cw(7xy)

for some joint sources 7xy .
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Are we doing math for the sake of doing math?

@ The sceptic in you might wonder whether we are just doing math.
@ In fact not! We show in the sequel that

T (mxy) = Exact Common Information of wxy-.

Exact Common Information was introduced by [Kumar et al., 2014].
@ And it is through this unexpected connection that we show that

Exact Common Information of mxy > Cw(7xy)

for some joint sources 7xy .
@ But let’s soldier on and tackle the Rényi common information for now.
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Rényi Common Information: The Weaker Case
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Rényi Common Information: The Weaker Case

Let’s start with a simple exercise. Consider the case s € (—1, 0] in which

Ti4s(mxy) < Cw(mxy)
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Rényi Common Information: The Weaker Case

Let’s start with a simple exercise. Consider the case s € (—1, 0] in which
Tiys(mxy) < Ow(mxy)

Theorem ([Yu and Tan, 2018] [Yu and Tan, 2020a])

For Rényi orders in (0, 1] (i.e., s € (—1,0]),

Tiis(mxy) = Tiys(nxy) = Ow(mxy).
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Ti4s(mxy) < Cw(mxy)

Theorem ([Yu and Tan, 2018] [Yu and Tan, 2020a])
For Rényi orders in (0, 1] (i.e., s € (—1,0]),

Tiis(mxy) = Tiys(nxy) = Ow(mxy).

Our stepping stone...

Vincent Y. F. Tan (NUS) Common Information EASIT 2021

20/88



Rényi Common Information: The Weaker Case

Let’s start with a simple exercise. Consider the case s € (—1, 0] in which

Ti4s(mxy) < Cw(mxy)

Theorem ([Yu and Tan, 2018] [Yu and Tan, 2020a])
For Rényi orders in (0, 1] (i.e., s € (—1,0]),

Tiis(mxy) = Tiys(nxy) = Ow(mxy).

Our stepping stone... Total variation distance [P — Q| := 3 >°_ |P(z) — Q(=)|.
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Rényi Common Information: The Weaker Case

Let’s start with a simple exercise. Consider the case s € (—1, 0] in which
Tiys(mxy) < Ow(mxy)

Theorem ([Yu and Tan, 2018] [Yu and Tan, 2020a])

For Rényi orders in (0, 1] (i.e., s € (—1,0]),

Tiis(mxy) = Tiys(nxy) = Ow(mxy).

Our stepping stone... Total variation distance [P — Q| := 3 >°_ |P(z) — Q(=)|.

Theorem ([Yu and Tan, 2018])
Foranye € [0,1),

TV (rxy) = Cw(nxy),  (Strong converse)
where T2V (mxy) is the minimum simulation rate required to ensure

limsup |Pxnyn» — %y | < €.
n—oo
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Total Variation Common Information

TV Dist. {

0 Cw(mxy)
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Total Variation Common Information

TV Dist. {

R

0 Cw(mxy)

In fact, we have an exponential strong converse, i.e., if R < Cw(7xy),

|Pxnyn — %y | >1—2""F forsome FE > 0.
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Total Variation Common Information

TV Dist. {

R

0 Cw(mxy)

In fact, we have an exponential strong converse, i.e., if R < Cw(7xy),
|Pxnyn — %y | >1—2""F forsome FE > 0.

Amenable to second-order?
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Total Variation Common Information

@ Achievability part follows from the soft-covering lemma.

If R>I(XY;W) then lim |Pxnyn —nky|=0.
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Total Variation Common Information

@ Achievability part follows from the soft-covering lemma.

It R>I(XY;W) then lim |Pxnyn —my|=0.

@ Converse requires a very cool information spectrum, single-letterization idea

from [Oohama, 2018].

Q entropy M)

Article
Exponential Strong Converse for Source Coding with
Side Information at the Decoder *

Yasutada Oohama

Department of C icati ineering and ics, University of Electro-Communications,
Tokyo 182-8585, Japan; oohama@uec.ac.jp; Tel.: +81-42-443-5358
+ This paper is an extended version of our paper published in 2016 i on

Theory and Its Applications, Monterey, CA, USA, 6-9 November 2016; pp. 171-175.
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Vincent Y. F. Tan (NUS) Common Information

74

Fa

EASIT 2021

22/88



Going Back to Rényi Cl: The Weaker Case s € (—1, 0]

@ Because T1s(mxy) < Cw(mwxy), only have to prove the converse.
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Going Back to Rényi Cl: The Weaker Case s € (—1, 0]

@ Because T1s(mxy) < Cw(mwxy), only have to prove the converse.
@ Main idea is a Pinsker-type inequality due to [Sason, 2016].

On the Rényi Divergence, Joint Range of Relative
Entropies, and a Channel Coding Theorem

Igal Sason, Senior Member, IEEE
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Going Back to Rényi Cl: The Weaker Case s € (—1, 0]

@ Because T1s(mxy) < Cw(mwxy), only have to prove the converse.
@ Main idea is a Pinsker-type inequality due to [Sason, 2016].

On the Rényi Divergence, Joint Range of Relative
Entropies, and a Channel Coding Theorem

Igal Sason, Senior Member, IEEE

Lemma
Forany s € (—1,0],

inf D145(P. = inf diis(qg+e
Px,Qx:|Px—Qx|[>e 1 X”QX) q€[0,1—¢€] 1+a(¢ ||C])

and

+

1+4+s 1
- . > |min{1,—— }log —— 71
qe[%rhf_qu (q+6IQ){mm{ . } g7 T 5 log?2
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Going Back to Rényi Cl: The Weaker Case s € (—1, 0]

@ From [Sason, 2016], we have

1+s 1 1 +
inf Diys(P > |min?{ 1, log —— + = log 2
Px,Qxi\llglx*Q)dZG 1+(PxlQx) = [mln{ s } & 1—c€ + s 08 :|
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Going Back to Rényi Cl: The Weaker Case s € (—1, 0]

@ From [Sason, 2016], we have

1+s 1 1 +
inf Diys(P > (mind1, =2 Llog —— + ~log2
Px,Qxi\lg’lx*QﬂZE 1+(PxlQx) = [mln{ s } & 1—c€ + s 08 :|

o If R < Cw(wxy), exponential strong converse to TV Cl says

|Pxnyn —T%y| >1—-2""F forsome FE >0.
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Going Back to Rényi Cl: The Weaker Case s € (—1, 0]

@ From [Sason, 2016], we have

1+s 1 1 +
inf Diys(P > (mind1, =2 Llog —— + Zlog2
Px,Qxi\lg’lx*QﬂZE 1+(PxlQx) = [mln{ s } °8 1—€ + s 08 :|

o If R < Cw(wxy), exponential strong converse to TV Cl says
|Pxnyn — 7%y | >1—-2""F forsome FE >0.

@ Thus, if R < Cw(7xy)

1 1 1+s 1 +
- inf D1, o(P >~ |min< 1, E+ Zlog?2
n nyQX1|11£1x—QX\Z€ 1+s(Px|Qx) = n I:mln{ S }n * S o8 :|

and the normalized Rényi divergence cannot vanish.
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Rényi Cl: The Stronger Case s € (0, 1] U {0}

@ Fors € (0,1] U {oo},
Cw(rxy) < Tips(mxy)-

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 25/88



Rényi Cl: The Stronger Case s € (0, 1] U {0}

@ Fors € (0,1] U {oo},
Cw(rxy) < Tips(mxy)-

@ We only discuss the case s = oo in this tutorial.
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Rényi Cl: The Stronger Case s € (0, 1] U {0}

@ Fors € (0,1] U {oo},
Cw(rxy) < Tips(mxy)-

@ We only discuss the case s = ~o in this tutorial.
@ For the other cases (i.e., s > 1 finite), see our upcoming monograph.
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Rényi Cl: The Stronger Case s € (0, 1] U {0}

@ Fors € (0,1] U {oo},
Cw(nxy) < Tiis(mxy).
@ We only discuss the case s = ~o in this tutorial.
@ For the other cases (i.e., s > 1 finite), see our upcoming monograph.

Definition

The maximal cross entropy w.r.t. (X,Y") ~ wxy over couplings of (Px, Py) is

HOQ(Px,PyH’]Txy) = max ZQXY QIJ y log

Qxvy €C(Px,Py) 7"'XY(CE y)

where
C(Px,Py) = {QXY S P(X X y) : QX = Px,Qy = Py}
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Rényi Cl: The Stronger Case s € (0, 1] U {0}

@ Fors € (0,1] U {oo},
Cw(nxy) < Tiis(mxy).
@ We only discuss the case s = ~o in this tutorial.
@ For the other cases (i.e., s > 1 finite), see our upcoming monograph.

Definition

The maximal cross entropy w.r.t. (X,Y") ~ wxy over couplings of (Px, Py) is

HOQ(Px,PyH’]Txy) = max ZQXY QIJ y log

Qxvy €C(Px,Py) 7"'XY(CE y)

where
C(Px,Py) = {QXY S P(X X y) : QX = Px,Qy = Py}

0 Hoo(rx,my||rxy) > H-(X;Y) with equality iff rxy = mxmy.
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Intuition for the Maximal Cross Entropy

@ Take a sequence of n-types T)((”) € Pn(X) and Ti(/") € Pn(Y).
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Intuition for the Maximal Cross Entropy
o Take a sequence of n-types T)((”) € P,(X) and T,(/") € Pn()).

@ Let them converge as

T)((”) — Px and T}(,”) — Py.
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Intuition for the Maximal Cross Entropy

o Take a sequence of n-types T)((”) € P,(X) and T,(/") € Pn()).
@ Let them converge as

T)((”) — Px and T}(,”) — Py.

@ What's the minimum =%, -probability of (=™, y™) where 2™ has type T)((") and
y" has type T, i.e.,

: n n n
min Ty (€™, y")?
Ton =TS Tyn=T{"

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 26/88



Intuition for the Maximal Cross Entropy

o Take a sequence of n-types T)((") € P,(X) and T,(/") € Pn()).
@ Let them converge as

T¢) 5 Py and TV — Py.

@ What's the minimum =%, -probability of (=™, y™) where 2™ has type T)((") and
y" has type T, i.e.,

: n n n
min Ty (€™, y")?
Ton =TS Tyn=T{"

@ By type gymnastics,

min Ty (2", y™) = exp ( — nHoo (Px, Py | 7xv)).
Tpn =T Tyn =T
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Intuition for the Maximal Cross Entropy

Take a sequence of n-types T)((") € P,(X) and T,(/") € Pn()).
Let them converge as

T¢) 5 Py and TV — Py.

What's the minimum 7' -probability of (™, y™) where z™ has type T)((") and
y" has type T, i.e.,

: n n n
o . Ty (€™, y")?
Tyn=T¢" Tyn =T}’

By type gymnastics,

min Ty (2", y™) = exp (— nHoo (Px, Py ||[7xv)).
Tpn =T Tyn =T

So Hoo (Px, Py||mxy) is the exponential decay rate of this probability.
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Upper and Lower Pseudo Common Informations

Definition
The upper pseudo-common information is

Falmxy) = min  —H(XY|W)+Eny [Hoo (P, Priwlimxy)]
Pw Px|\w Py |w:
Pxy=mxy
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Upper and Lower Pseudo Common Informations

Definition
The upper pseudo-common information is

FOO(TFXY) = min —H(XY‘W) + EPW [HOO(PXWV-, Py‘w*”??'xyﬂ
Pw Px\w Py |w:
Pxy=mxy

Contrast to Wyner’s common information

Cw(’l'rxy) = min —H(XY|W) +H(XY)
Pw Px\w Py |w:
Pxy=7mxy
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Upper and Lower Pseudo Common Informations

Definition
The upper pseudo-common information is

FOO(TFXY) = min —H(XY‘W) + EPW [HOO(PXWV-, Py‘w*”??'xyﬂ
Pw Px\w Py |w:
Pxy=mxy

Contrast to Wyner’s common information

Cw(’l'rxy) = min —H(XY|W) +H(XY)
Pw Px\w Py |w:
Pxy=7mxy

Definition
The lower pseudo-common information is
I _(m = inf —H(XY|W
L o(mxy) . (XY|W)
Pxy=7xy

inf EQuy v [Hoo (Px(w» Pyw+ .
QWW/GICH(PW,PW) Quww [ oo ( X|w, LY |[W ||7TXY)]
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Upper and Lower Pseudo Common Informations

Definition
The upper pseudo-common information is

Fo(rxy) == min —H(XY|W)+Ep,, [HOO(PX‘W., PY‘W||7TXy)}
Pw Px\w Py |w:
Pxy=mxy

Contrast to Wyner’s common information

Cw(’l'rxy) = min —H(XY|W) +H(XY)
Pw Px\w Py |w:
Pxy=7mxy

Definition
The lower pseudo-common information is
I (w = inf —H(XY|W
L o(mxy) . (XY|W)
Pxy=7xy

inf Eo.. ..., [Hoo(P , Py yw .
wa/elél(Pw.,Pw) Qww [ oo X|W, LY |W ||7TXY)}
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Rényi Common Information of order oo

Theorem ([Yu and Tan, 2020a] [Yu and Tan, 2020c])

The order-oo Rényi common information admits the following single-letter bounds

Too(mxy) > Too(mxy) > max{L(mxy), Cw(mxy)}

and

T (mxy) < Too(mxy) < Too(mxy)-
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Rényi Common Information of order oo

Theorem ([Yu and Tan, 2020a] [Yu and Tan, 2020c])

The order-oo Rényi common information admits the following single-letter bounds

Too(mxy) > Too(mxy) > max{L(mxy), Cw(mxy)}

and ~ B
Too(mxy) < Too(mxy) < Too(mxy)-

Achievability: Rényi soft-covering [Yu and Tan, 2019d] and truncated product
distributions.
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Rényi Common Information of order oo

Theorem ([Yu and Tan, 2020a] [Yu and Tan, 2020c])

The order-oo Rényi common information admits the following single-letter bounds

Too(mxy) > Too(mxy) > max{L(7xv), Cw(mxy)}

and

Too(mxy) < Too(Txy) < Too(mxy).

Achievability: Rényi soft-covering [Yu and Tan, 2019d] and truncated product
distributions.

Product distribution

: Py w") = [ P ()
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Rényi Common Information of order oo

Theorem ([Yu and Tan, 2020a] [Yu and Tan, 2020c])

The order-oo Rényi common information admits the following single-letter bounds

Too(mxy) > Too(mxy) > max{L(7xv), Cw(mxy)}

and

Too(mxy) < Too(Txy) < Too(mxy).

Achievability: Rényi soft-covering [Yu and Tan, 2019d] and truncated product
distributions.

Truncated product distribution

Py (") o ( T] Potwn)) 1" € 8}

i=1
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Rényi Common Information of other orders € (1,00)?

@ Can obtain similar bounds [Yu and Tan, 2020a]
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Rényi Common Information of other orders € (1, 00)?

@ Can obtain similar bounds [Yu and Tan, 2020a]

@ Forthe DSBS, for 1 + s € [0, 2], after some calculations, we get

Plot of thP Reml CI Agalmt its Oder 1+s
0.74 T T T

—o— Uppe! Bound on the Rényi CI
0.735 || —«— Lower Bound on the Rényi CI

0.725

072

Common Information

0.715 1
0.71 1

0.705 = he = =
0 0.2 0.4 06 0.8 2

Order 1+ s :
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Rényi Common Information of other orders € (1, 00)?

@ Can obtain similar bounds [Yu and Tan, 2020a]

@ Forthe DSBS, for 1 + s € [0, 2], after some calculations, we get

@ Rényi common

Vincent Y. F. Tan (NUS)

Plot of thP Reml CI Agalmt its Oder 1 + s

—o— Uppe! Bound on the Rényi CI
0.735 || —«— Lower Bound on the Rényi CI

)
S
@

)
3
N
&

)
3
N

0.715

Common Information

0.71

0.705 ® ¢ ¢ A4 4
0

Order 1+ s :

information for the DSBS increases with 1 + s € [1, 2]!
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Rényi Common Information of other orders € (1, 00)?

@ Can obtain similar bounds [Yu and Tan, 2020a]

@ Forthe DSBS, for 1 + s € [0, 2], after some calculations, we get

Plot of ths Ren}l CI Agaxmt its O!der 1 + s

—o— Uppe! Bound on the Rényi CI
0.735 || —«— Lower Bound on the Rényi CI

)
2 )
N S
& @

)
3
N

Common Information

0.715

0.71

0.705 ® ¢ ¢ A4 4
0

Order 1+ s :

@ Rényi common information for the DSBS increases with 1 + s € [1, 2]!

Does this have more profound implications?
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@ Introduction: Measures of Information Among Two Random Variables
e Wyner's Common Information

e Rényi Common Information

Q Exact Common Information

e Approximate and Exact Channel Synthesis

@ Nonnegative Matrix Factorization and Nonnegative Rank

0 Gécs—Korner—Witsenhausen’s Common Information

e Non-Interactive Correlation Distillation

«O0>» «Fr «EHr» «FE)r» EFl= QX



Exact Common Information?
@ In the distributed source simulation problem a la Wyner, we mandated that

1
ED(PX"Y"”T(?(Y) — 0.
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Exact Common Information?
@ In the distributed source simulation problem a la Wyner, we mandated that
D(Pxayalaty) = 0.
@ What if we require

Pxnyn = 7%y forsome n e N7
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Exact Common Information?
@ In the distributed source simulation problem a la Wyner, we mandated that
LD(Pxryelhy) 0.
@ What if we require

Pxnyn = 7%y forsome n e N7

@ Using fixed-length block codes, we need rate lim,, . - log [, | over
W € W, such that X — W — Y| Potentially up to min{log | X[, log |V|}.

©9
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Exact Common Information?
@ In the distributed source simulation problem a la Wyner, we mandated that
LD(Pxryelhy) 0.
@ What if we require

Pxnyn = 7%y forsome n e N7

@ Using fixed-length block codes, we need rate lim,, . - log [, | over

W € W, such that X — W — Y| Potentially up to min{log | X[, log |V|}.
o)
@ In come [Kumar et al., 2014], who introduced
2014 IEEE International Symposium on Information Theory
Exact Common Information
Gowtham Ramani Kumar Cheuk Ting Li Abbas El Gamal
Electrical Engineering Electrical Engineering Electrical Engineering
Stanford University Stanford University Stanford University
Email: gowthamr@: du Email: ctli edu Email: abbas@stanford.edu
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Exact Common Information

n

Pxnyw,

7

PYnan

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 32/88



Exact Common Information

W,

@ A synthesis code (P, , Pxnw,, Py»w,)
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Exact Common Information

W,

@ A synthesis code (P, , Pxnw,, Py»w,)
@ W, can be any (not necessarily uniform) discrete random variable
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Exact Common Information

W,

@ A synthesis code (P, , Pxnw,, Py»w,)
@ W, can be any (not necessarily uniform) discrete random variable
@ Distribution induced by the code is

PXW,YW ,y ZPW" PX”\W ( "\w)Pyn‘Wn(y"|w).
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Exact Common Information

W,

@ A synthesis code (P, , Pxnw,, Py»w,)
@ W, can be any (not necessarily uniform) discrete random variable
@ Distribution induced by the code is

PXW,YW ,y ZPW" PX”\W ( "\w)Pyn‘Wn(y"|w).

@ Require
Pxnyn = 7%y forsome neN.
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Exact Common Information

Asymptotic rate induced by the code is

H
lim (W)

n—roo n
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Exact Common Information

Asymptotic rate induced by the code is

H
lim (W)

n— 00 n

@ Compress W,, by a prefix-free, zero-error variable-length code (e.g.,
Shannon-Fano or Huffman code)

fiWn = {01} = [ {0,1}"

n>1

@ Let the length of W,, be £(W,).
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Exact Common Information

Asymptotic rate induced by the code is

H
lim (W)

n— 00 n

@ Compress W,, by a prefix-free, zero-error variable-length code (e.g.,
Shannon-Fano or Huffman code)

fiWn = {01} = [ {0,1}"
n>1
@ Let the length of W,, be £(W,).

@ Then, by Shannon’s zero-error compression theorem, the optimal expected
codeword length L(W,,) = E[¢(W,,)] satisfies

H(Wy) < L(Wyn) < H(Wy) +1

which implies that
L(V /n . H //Yn,
lim (W) = lim w

n— 00 n n—o00 n
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Exact Common Information

Definition
The exact common information is defined as

Tex(mxy) i= inf{ lim M

i Pxnyn = - for some n > 1}
n— o0 n
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Exact Common Information

Definition
The exact common information is defined as

Tex(mxy) i= inf{ lim M

i Pxnyn = - for some n > 1}
n—oo n

Theorem ([Kumar et al., 2014])

1
Tex(mxy) = lim — min H(W,).
( ) n—oo M PWnPXn\WnPYn\Wn: ( )
Pxnyn=mn'yy
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Definition
The exact common information is defined as

Tex(mxy) i= inf{ lim M

i Pxnyn = - for some n > 1}
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Theorem ([Kumar et al., 2014])

1
Tex(mxy) = lim — min H(W,).
( ) n—oo N PWnPXn\WnPYn\Wn: ( )
Pxnyn=mn'yy

@ Multi-letter characterization!
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Definition
The exact common information is defined as

Tex(mxy) i= inf{ lim M

i Pxnyn = - for some n > 1}
n— o0 n

Theorem ([Kumar et al., 2014])

.1 .
Tex(mxy) = lim — min H(W,).
n—oo M PWnPXn\WnPYn\Wn:
Pxnyn=mn'yy

@ Multi-letter characterization!
@ Exact Cl > Wyner’s Cl
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Exact Common Information

Definition
The exact common information is defined as

Tex(mxy) i= inf{ lim M

i Pxnyn = - for some n > 1}
n— o0 n

Theorem ([Kumar et al., 2014])

1
Tex(mxy) = lim — min H(W,).
X( ) n—)OOTLPWnPXn‘Wnpyn‘Wn: ( n)
Pxnyn=mn'yy

@ Multi-letter characterization!
@ Exact Cl > Wyner’s Cl
@ Exact Cl > Wyner's CI?

@ Open problem posed by
[Kumar et al., 2014]

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 34/88



Exact Common Information

Definition
The exact common information is defined as
LW,
Tex(mxy) := inf{ lim M : Pxnyn = 7%, for some n > 1}
n—00 n

Theorem ([Kumar et al., 2014])

o1 .
Tex(rxy) = lim — min H(W,).
n—00 N, Pw,, Pxn\w, Pyn|w,:
Pxnyn=myy

@ Multi-letter characterization! As expected the exact common information rate is greater
than or equal to the Wyner common information.
@ Exact Cl > Wyner’s Cl Proposition 3.

s G(X;Y) > J(X;Y).
@ Exact Cl > Wyner’s CI?
In the following section, we show that they are equal for

) Open prob|em posed by the SBES in Example 1. We do not know if this is the case

[Kumar et al., 201 4] in general, however.
From [Kumar et al., 2014]
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Exact Common Information

Definition
The exact common information is defined as
. . LW,
Tex(mxy) = mf{ lim M : Pxnyn = 'y forsomen > 1
n— 00 n
v
Theorem ([Kumar et al., 2014])
1 .
Tex(rxy) = lim — min H(W,).
n—oo N, Pw,, Pxn\w, Pyn|w,:
Pxnyn=my
. . . the exact common information rate. While this multiletter
@ Multi-letter characterization! characterization is in general greater than or equal to the
‘Wyner common information, we showed that they are equal
@ Exact Cl > Wynel”S Cl for the SBES. The main open question is whether the exact
- common information rate has a single letter characterization in
@ Exact Cl > Wyner’s Cl? general. Is it always equal to the Wyner common information?
Is there an example 2-DMS for which the exact common
) Open pr0b|em posed by information rate is strictly larger than the Wyner common
information? It would also be interesting to further explore
[Kumal’ et al., 201 4] the application to machine learning.
From [Kumar et al., 2014]
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Surprising Equivalence: co-Rényi Cl and Exact Cl

Theorem ([Yu and Tan, 2020c])

For a bivariate source 7wxy on a finite alphabet,

Tex(mxy) = Too(mxY)-
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Surprising Equivalence: co-Rényi Cl and Exact Cl

Theorem ([Yu and Tan, 2020c])

For a bivariate source 7wxy on a finite alphabet,

Tex(mxy) = Too(mxY)-

Rényi Cl Exact Cl

Wyner’s ClI

Rényi Order
1+s
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Proof of = Part of Equivalence Theorem

Lemma ([Kumar et al., 2014], [Vellambi and Kliewer, 2016])
d rate-R co-Rényi Cl code — 3 rate-R Exact Cl code J
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Proof of = Part of Equivalence Theorem

Lemma ([Kumar et al., 2014], [Vellambi and Kliewer, 2016])
d rate-R co-Rényi Cl code — 3 rate-R Exact Cl code

@ drate-R co-Rényi Cl code

Doo(Pxnyn|myy) <€ = Pxnyn (2",y") <27y (2", y")
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Proof of = Part of Equivalence Theorem

Lemma ([Kumar et al., 2014], [Vellambi and Kliewer, 2016])
d rate-R co-Rényi Cl code — 3 rate-R Exact Cl code

@ drate-R co-Rényi Cl code

Doo(Pxnyn||my) <€ = Pxnyn (z",y") <27y (2", 9y")

@ Define
2¢%y (2™, y") — Pxnyn (2™, y")
2¢ —1 ’

Pxnyn (2™, y") =

then obviously, Pxny« (z",y") is a valid distribution.
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Proof of = Part of Equivalence Theorem

Lemma ([Kumar et al., 2014], [Vellambi and Kliewer, 2016])
d rate-R co-Rényi Cl code — 3 rate-R Exact Cl code

@ drate-R co-Rényi Cl code

Doo(Pxnyn||my) <€ = Pxnyn (z",y") <27y (2", 9y")

@ Define
2°mlyy (@™, y") — Pxonyn (2", y")

Pxnyn (2™, y") := e 1 ,

then obviously, Pxny« (z",y") is a valid distribution.

@ Hence 7%, can be written as a mixture distribution

hy (2,y") = 27 Pxayn (27, 4") + (1 = 27) Pxnyn (z7,y")
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Proof of = Part of Equivalence Theorem

Ty (2", y") =27 Pxnyn (2", y") + (1 —27°) Pynyn (2™, y™)

@ A time-sharing variable-length scheme:

» The encoder first generates U ~ Bern(2™°), and transmits it to two generators
using 1 bit

» If U = 1, then the encoder and two generators use the rate- R oco-Rényi Cl code
to generate Pxny»

» If U = 0, then the encoder generates (X", Y") ~ ﬁxnyn, and compresses it
with rate log(|X||)|) to generate Pxnyn

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 37/88



Proof of = Part of Equivalence Theorem

Ty (2", y") =27 Pxnyn (2", y") + (1 —27°) Pynyn (2™, y™)

@ A time-sharing variable-length scheme:

» The encoder first generates U ~ Bern(2™°), and transmits it to two generators
using 1 bit

» If U = 1, then the encoder and two generators use the rate- R oco-Rényi Cl code
to generate Pxny»

» If U = 0, then the encoder generates (X", Y") ~ ﬁxnyn, and compresses it
with rate log(|X||)|) to generate Pxnyn

@ The induced distribution is 7%y exactly
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Proof of = Part of Equivalence Theorem

Ty (2", y") =27 Pxnyn (2", y") + (1 —27°) Pynyn (2™, y™)

@ A time-sharing variable-length scheme:

» The encoder first generates U ~ Bern(2™°), and transmits it to two generators
using 1 bit

» If U = 1, then the encoder and two generators use the rate- R oco-Rényi Cl code
to generate Pxny»

» If U = 0, then the encoder generates (X", Y") ~ ﬁxnyn, and compresses it
with rate log(|X||)|) to generate Pxnyn

@ The induced distribution is 7%y exactly
@ The total code rate

< = 4+27°R+ (1-27log(|X[|Y]) — R

S|

asn — o0o,e — 0
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Proof of <= Part of Equivalence Theorem

Lemma
3 rate-R co-Rényi Cl code < 4 rate-R Exact Cl code J
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Proof of <= Part of Equivalence Theorem

Lemma
3 rate-R co-Rényi Cl code < 4 rate-R Exact Cl code

o Let {(Pw,, Px+w,, Py*w,)}ren be rate-R exact Cl codes such that

1
lim o H(Pw,) = R

k—o0

&

but W, is not uniform.
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Proof of <= Part of Equivalence Theorem

Lemma
3 rate-R co-Rényi Cl code < 4 rate-R Exact Cl code

o Let {(Pw,, Px+w,, Py*w,)}ren be rate-R exact Cl codes such that

1
lim o H(Pw,) = R

k—o0

but W, is not uniform. ¢
@ Simulate W} using two Rényi source resolvability codes!

~ Wnr " ~ Xnk
Q) B PR,
M
~Wp n ~ Ynk
f () k [)YW*VL-
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Proof of <= Part of Equivalence Theorem

£(-) : Uniform W)™
[ ] .. .. : /.
00t o .\..'

f() : Uniform
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Proof of <= Part of Equivalence Theorem

£(-) : Uniform W)™
. o. '. : /.
. o.' . \..-
M ~ Unif[1 : 27+5]
f() : Uniform

Succeed in the sense of Do (Pr(an || Py, ) — 0if [Yu and Tan, 2019d]

1
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Proof of <= Part of Equivalence Theorem

~ Wy n ~ Xnk:
f () b PX kW
M
~ Wy n ~ Ynk
f () b PY]“ [Wy
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Proof of <= Part of Equivalence Theorem

~ Wy n ~ Xnk:
f () b PX kW
M
~ Wy n ~ Y’nk
f () b PY]"' [Wy

1 1 n n
@ For the given stochastic kernel (channel) PX*‘\WA» PW‘\WM
n n n kn
Py — ka\m P, YW, 7 TXY

n n
Pf(]\[) — PX"'”’VA'PY’““"Vh — Pka,ykn
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Proof of <= Part of Equivalence Theorem

~ Wy n ~ Xnk:
f@) bop Xk Wi
M
~ Wy n ~ Y’nk
f@) B PR,

H 1 mn n
@ For the given stochastic kernel (channel) PX*‘\WA» PW‘\WM
n n n kn
Py — ka\m P YEw, — 7 TXY
n n
Pf(]\[) ? ka'”,yk Pyk:“,yk — Pka,ykn

@ By the data processing inequality (DPI) for Rényi divergence,

n—oo

Doo(Pxrnysn [7y) < Doo(Pyan |1 Piiy,) =30
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Combining with Single-Letter Bounds from Rényi Cl

Theorem ([Yu and Tan, 2020c])
For (X,Y) ~ wxy on a finite alphabet,

To(mxy) < Tex(txy) = Too(mxy) < To(mxy).
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Combining with Single-Letter Bounds from Rényi Cl

Theorem ([Yu and Tan, 2020c])
For (X,Y) ~ wxy on a finite alphabet,

To(mxy) < Tex(txy) = Too(mxy) < To(mxy).

@ Gone from a multi-letter expression by [Kumar et al., 2014]

1
lim — min H(W,)
n—00 N Pw, Pxnw, Pyniw,:
Pxn,yn:ﬂ';t(y

to single-letter bounds.
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Combining with Single-Letter Bounds from Rényi Cl

Theorem ([Yu and Tan, 2020c])
For (X,Y) ~ wxy on a finite alphabet,

To(mxy) < Tex(txy) = Too(mxy) < To(mxy).

@ Gone from a multi-letter expression by [Kumar et al., 2014]

1
lim — min H(W,)
n—00 N Pw, Pxnw, Pyniw,:
Pxn,yn:ﬂ';t(y

to single-letter bounds.

@ Presumably the bounds are more amenable to numerical evaluation?

Vincent Y. F. Tan (NUS) Common Information EASIT 2021

41/88



Revisiting the DBSS

i

N
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Revisiting the DBSS

N[—=
'\
v
o

i

N
N[
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Revisiting the DBSS

X Y X
0>< >1<
1—a

Theorem (Evaluation of Upper and Lower Bounds for DSBS(p))

N

N
N[

Fora DSBS (X,Y) ~ DSBS(p) with crossover probability p € (0,1/2),

Too(mxy) = Tex(Txv)

— —9h(a) — (1 — 2) log % (¢ + (1 - a)?)| - 2alogla(l — )],

where a = 1_V21_2p € (0,%) and h(a) := —aloga — (1 — a)log(1 — a).
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Numerical Results — DSBS

1 T T

—&— Exact and oo-Renyi Com. Inf.
09r —A— Wyner Com. Inf. 7

05 b

Com. Inf. [Bits/Symbol]
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Numerical Results — DSBS

T
—&— Exact and oo-Renyi Com. Inf.
—A— Wyner Com. Inf. 7

o
©

Com. Inf. [Bits/Symbol]
o o o o o o o
N w = o o ~ ©

I3
[

o

I I I I
0.1 0.2 0.3 0.4 0.5
p

o

Tex(DSBS(p)) > Cw(DSBS(p))

Answers the open question in [Kumar et al., 2014].

Vpe (0,1/2).
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Why is Exact Cl (or oo-Rényi Cl) > Wyner’s CI?
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Why is Exact Cl (or oco-Rényi Cl) > Wyner’s CI?

7;(") (Py)

=} = = = == DA
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Why is Exact Cl (or oco-Rényi Cl) > Wyner’s CI?

7;(") (Py)

7" (Pxy)

7;(71) (PX)
Wyner’'s common information requires

Pxnyn (2", y")

=1+0(1) foramostall (z",y") e 7.\ (rxy)
ey (1) ( )

=} = = = == DA
Vincent Y. F. Tan (NUS) Common Information EASIT 2021 44/88



Why is Exact Cl (or oco-Rényi Cl) > Wyner’s CI?

7;(70 ( Py)

Vincent Y. F. Tan (NUS)

7;(") (PX)
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Common Information
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Why is Exact Cl (or oco-Rényi Cl) > Wyner’s CI?

7;(70 ( Py)

T (Pxy)

74" (Px)
Rényi Cl of order oo or Exact Cl requires

Pxnyn (2", y")

——————=1+0(1) foral (z",y") € supp(Pxnyn)
Ty (2™, y™)
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Why is Exact Cl (or oco-Rényi Cl) > Wyner’s CI?

7;(") (wallwn) « 7;(”) (PYW|wn)

7;(") (Py)

7;(") ( PX)

Reényi Cl of order oo or Exact Cl requires

Pxnyn(x™,y™)

— =1+o(1) forall (z",y") €| Jsupp(Pxnpw, (-|w) Py, (|w
Ty (27, y™) M) ( ) U (X|W(| )Py njw, (+ ))

w
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Why is Exact Cl (or oco-Rényi Cl) > Wyner’s CI?

7;(") (wallwn) « 7;(”) (PYW|wn)

7;(") (Py)

Type overflow

7;(") ( PX)

Reényi Cl of order oo or Exact Cl requires

Pxnyn(x™,y™)

— =1+o(1) forall (z",y") €| Jsupp(Pxnpw, (-|w) Py, (|w
Ty (27, y™) M) ( ) U (X|W(| )Py njw, (+ ))

w
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When is Exact CI (or co-Rényi Cl) = Wyner’s CI?
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When is Exact Cl (or co-Rényi Cl) = Wyner’s CI?

ﬁ(")(PXWWT) x T (Pyww™)

7—6(71) (Py)

7-6(?1) (PX)

o [ = = == A
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When is Exact Cl (or co-Rényi Cl) = Wyner’s CI?

72(")(wale) x T (Pyww™)

7—6(71) (Py)

7-6(?1) (PX)
Sufficient Condition [Vellambi and Kliewer, 2016]
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When is Exact Cl (or co-Rényi Cl) = Wyner’s CI?

72(")(wale) x T (Pyww™)

7—6(71) (Py)

7-6(?1) (PX)
Sufficient Condition [Vellambi and Kliewer, 2016]
H(X|W =w)HY|W =w)=0 foreach w
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When is Exact Cl (or co-Rényi Cl) = Wyner’s CI?

72(")(wale) x T (Pyww™)

7—6(71) (Py)

7 (Px)
Sufficient Condition [Vellambi and Kliewer, 2016]
H(X|W =w)H(Y|W =w)=0 foreach w
— C(Pxyw,Pviw) = {PxywPyiw}
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When is Exact Cl (or co-Rényi Cl) = Wyner’s CI?

ﬁ(”)(PXWWT) x T (Pyww™)

7—6(71) (Py)

7 (Px)
Sufficient Condition [Vellambi and Kliewer, 2016]
H(X|W =w)H(Y|W =w)=0 foreach w
— C(Pxyw,Pviw) = {PxywPyiw}

= T (Pxyv)~ | (Te(")(Plewn) x 7;(">(wa|w"))
wn el

Vincent Y. F. Tan (NUS) Common Information

EASIT 2021

46/88



When is Exact Cl (or co-Rényi Cl) = Wyner’s CI?

72(")(wale) x T (Pyww™)

7—6(71) (Py)

7 (Px)
Sufficient Condition [Vellambi and Kliewer, 2016]
H(X|W =w)H(Y|W =w)=0 foreach w
— C(Pxyw,Pviw) = {PxywPyiw}

= T (Pxyv)~ | (Te(")(Plewn) x 7;(">(wa|w"))
wn el

<« 7. (Pxy) ~ supp(Pxnyn) (No type overflow)
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When Exact Cl (or oco-Rényi Cl) = Wyner’s Cl

Example for Sufficient Condition:

HX|W=w)HY|W=w)=0 VYw

Vincent Y. F. Tan (NUS) Common Information EASIT 2021 47/88



When Exact Cl (or oco-Rényi Cl) = Wyner’s Cl

Example for Sufficient Condition:

HX|W=w)HY|W=w)=0 VYw

@ Symmetric Binary Erasure Source (SBES)

(SIS

[en}

%

[es)

N|—=

o

\ %
—

Y

=

—
S
[\

Y

[en)

[N
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When Exact Cl (or oco-Rényi Cl) = Wyner’s Cl

Example for Sufficient Condition:

HX|W=w)HY|W=w)=0 VYw

@ Symmetric Binary Erasure Source (SBES)

(SIS

[en}

%

[es)

N|—=

o

\ %
—

Y
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—
S
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When Exact Cl (or oco-Rényi Cl) = Wyner’s Cl
Example for Sufficient Condition:

HX|W=w)HY|W=w)=0 VYw

@ Symmetric Binary Erasure Source (SBES)

%%
1- 1-p 1—po
1 > >
: Oi:o ’ 0\0 \0
p 4| 1 P2
e e — »¢€
p y %
1 1 >
7 17—, 1 3 L= Tt
@ (1-p1)(1—p2)=1-p.
@ The Exact Cl is equal to Wyner’s Cl and
Foomy) = Tiaes(mxy) = Cogna(rxy) = 4 L P53
oco\TXY ) = 1Exact\TXY ) = CWyner\TXY ) = .
e Hp) p>3
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@ Introduction: Measures of Information Among Two Random Variables
e Wyner's Common Information

e Rényi Common Information

@ Exact Common Information

© Approximate and Exact Channel Synthesis

@ Nonnegative Matrix Factorization and Nonnegative Rank

0 Gécs—Korner—Witsenhausen’s Common Information

e Non-Interactive Correlation Distillation

«O0>» «Fr «EHr» «FE)r» EFl= QX



Channel Synthesis

@ Given mxy = TXTY|X consider the following task:

K,, ~ Unif[2"f°] (Shared Key)

X” ~ ﬂ-g( P Wn P Y’VL ~ PYn'Xn
W, XK, YW, K, >
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Channel Synthesis

@ Given mxy = TXTY|X consider the following task:

K,, ~ Unif[2"f°] (Shared Key)

X” ~ ﬂ-g( P Wn P Y’VL ~ PYn'Xn
W, XK, YW, K, >

@ Goal: Ensure that

Pxnyn =~ m'%y (Approximate) or Pxnyn = myy (Exact).
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Channel Synthesis

@ Given mxy = TXTY|X consider the following task:

K,, ~ Unif[2"f°] (Shared Key)

X" ~ 71'?( 7 Wn P Y™ ~ Pyn|Xn
W, XK, YW, K, >

@ Goal: Ensure that
Pxnyn = m'%y (Approximate) or Pxnyn = 7'y (Exact).
@ Equivalently,

Py xn =~ 7r§}|X (Approximate) or Pynxn» = w;‘x (Exact).
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Channel Synthesis

@ Given mxy = TXTY|X consider the following task:

K,, ~ Unif[2"f°] (Shared Key)

Xﬂ, ~ ﬂ-SL( P Wn P Y’VL ~ PYn'Xn
VV,,,‘X'"I(n Y”‘WnKn I

@ Goal: Ensure that

Pxnyn =~ m'%y (Approximate) or Pxnyn = myy (Exact).
@ Equivalently,

Pyn|xn ~ 7r§}|X (Approximate) or Pynxn» = w;‘x (Exact).

@ Known as channel synthesis [Cuff, 2012].
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Approximate Channel Synthesis

@ Consider approximate channel synthesis under TV criterion, i.e.,

. _.n _
nh—>néo ‘PX”Y” 7TXY| 0-
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Approximate Channel Synthesis

@ Consider approximate channel synthesis under TV criterion, i.e.,

Ji [Py =] =0

@ Let the region of achievable rate pairs (R, Ry) be Rw (mxy).
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Approximate Channel Synthesis

@ Consider approximate channel synthesis under TV criterion, i.e.,

hm ‘PXnyn — Tr;L{Y| = O

n—oo

@ Let the region of achievable rate pairs (R, Ry) be Rw (mxy).

@ When Ry = 0, problem reduces to approximate distributed source simulation

n n
X"~ 7y

Py, |xn

W, € [2"F]

Pynw,

Y’n

so the minimum compression rate is Wyner’s common information

R*(Ro = O‘Txy) = Cw(ﬂ'xy)
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Approximate Channel Synthesis

@ Consider approximate channel synthesis under TV criterion, i.e.,

. _.n _
nll)n;o ‘PXnyn 7'l'Xy| 0.

@ Let the region of achievable rate pairs (R, Ry) be Rw (mxy).
@ When Ry = 0, problem reduces to approximate distributed source simulation

X"~ WT, c 2nR yn
X PW"‘X" [ } PY”‘Wn

so the minimum compression rate is Wyner’s common information

R*(Ro = O‘Txy) = Cw(ﬂ'xy)

@ When Ry = o,
R*(Ro = OO‘ny) = LT(X;Y)
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Approximate Channel Synthesis

It was shown in [Cuff, 2012] that

R>I(X;W)
Rw(ﬂxy) = U (R, Ro) : } .
> .
Pw Px\w Py |w: R+ Ro> I(XY’W)
Pxy=nmxy
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Approximate Channel Synthesis

It was shown in [Cuff, 2012] that

R>I(X;W)
Ru(moy) = U BBo) = o Ry > (XY W) }

Pw Px 1w Py |w:
Pxy=mxy

Ry |

H(Y|X)
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Exact Channel Synthesis

K,, ~ Unif[2"#0] (Shared Key)

n n
X"~

Vincent Y. F. Tan (NUS)
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Exact Channel Synthesis

K,, ~ Unif[2"#0] (Shared Key)

n n
X"~

PWn |Xn K,

Pyoyw, K,

Y’IL

@ Now, similarly to exact common information, we demand that

Pxnyn = %y for some large enough n € N

but just like exact Cl, we allow variable-length codes for W,,.
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Exact Channel Synthesis

K,, ~ Unif[2"#0] (Shared Key)

n n
X"~

PWn |Xn K,

PY"|W"Kn

Y’IL

@ Now, similarly to exact common information, we demand that

Pxnyn = %y for some large enough n € N

but just like exact Cl, we allow variable-length codes for W,,.

o If Ry = oo, [Bennett et al., 2002] showed that the minimum Ris I(X;Y).
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Exact Channel Synthesis

K,, ~ Unif[2"#0] (Shared Key)

n n n
S W, e Y
W, X" K, YW, K,

@ Now, similarly to exact common information, we demand that
Pxnyn = %y for some large enough n € N

but just like exact Cl, we allow variable-length codes for W,,.
o If Ry = oo, [Bennett et al., 2002] showed that the minimum Ris I(X;Y).

@ Best tradeoff between R and Ry in the non-extremal cases considered by
[Yu and Tan, 2020b].
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Doubly Binary Symmetric Sources

Optimal Rate Regions for the DSBS

0.9
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Exact Channel Synthesis Region |
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Doubly Binary Symmetric Sources

Optimal Rate Regions for the DSBS

Exact Channel Synthesis Region

09 ]
— — TV Approx Channel Synthesis Region
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Exact channel synthesis region is strictly smaller than Rw (7xv)
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Doubly Binary Symmetric Sources

Optimal Rate Regions for the DSBS

Exact Channel Synthesis Region

09 ]
— — TV Approx Channel Synthesis Region
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Exact channel synthesis region is strictly smaller than Rw (7xv)
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@ Introduction: Measures of Information Among Two Random Variables
e Wyner's Common Information

e Rényi Common Information

0 Exact Common Information

e Approximate and Exact Channel Synthesis

° Nonnegative Matrix Factorization and Nonnegative Rank

0 Gécs—Korner—Witsenhausen’s Common Information

e Non-Interactive Correlation Distillation
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Nonnegative Matrix Factorization

e Given a matrix M € R7**, find U € R7*" and V € R’** such that
M~UV o M=UV.

Many applications. See [Cichocki et al., 2009] or [Gillis, 2020].
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Nonnegative Matrix Factorization

e Given a matrix M € R7**, find U € R7*" and V € R’** such that
M~UV o M=UV.

Many applications. See [Cichocki et al., 2009] or [Gillis, 2020].
@ Dimensionality reduction:
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Nonnegative Matrix Factorization

e Given a matrix M € R7**, find U € R7*" and V € R’** such that
M~UV o M=UV.

Many applications. See [Cichocki et al., 2009] or [Gillis, 2020].
@ Dimensionality reduction:

k

k T V
r l 1 r...
m M ~m|U ! M !
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Nonnegative Matrix Factorization

e Given a matrix M € R7**, find U € R7*" and V € R’** such that
M~UV o M=UV.

Many applications. See [Cichocki et al., 2009] or [Gillis, 2020].
@ Dimensionality reduction:

k

k T V
r l 1 r...
m M ~m|U ! M !

@ Only interested in exact factorization.
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Nonnegative Matrix Factorization

e Given a matrix M € R7**, find U € R7*" and V € R’** such that
M~UV o M=UV.

Many applications. See [Cichocki et al., 2009] or [Gillis, 2020].
@ Dimensionality reduction:

k

k T Vv
r . 1 r...
m M =m|U | M !

@ Only interested in exact factorization.

@ What is the minimum r to achieve exact factorization? Is this connected to
information theory?
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Nonnegative Rank
Definition
The nonnegative rank of M € RTX’“, denoted as rank (M), is the smallest
integer r such that
M = Z u,v,
w=1

for some nonnegative vectors u,, € R7 and v,, € R%.
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Nonnegative Rank

Definition

The nonnegative rank of M € RTX’“, denoted as rank (M), is the smallest

integer r such that
T
M = Z u,v,
w=1

for some nonnegative vectors u,, € R} and v,, € ]R’jr.

@ Obviously, rank(M) < rank, (M)
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Nonnegative Rank
Definition

The nonnegative rank of M € R7"**, denoted as rank (M), is the smallest
integer r such that

T

T

M= E Uy, Vv,
w=1

for some nonnegative vectors u,, € R7 and v,, € R%.

@ Obviously, rank(M) < rank, (M)

@ Gap can be large. Fix {a1,...,a,»} C R and consider distance matrix
0 (al — a2)2 (a1 — a3)2 N (a1 — am)2
M (CLQ - CL1)2 0 (ag — a3)2 . (ag — C(,m)2
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Nonnegative Rank
Definition

The nonnegative rank of M € R7"**, denoted as rank (M), is the smallest
integer r such that

T

T

M= E Uy, Vv,
w=1

for some nonnegative vectors u,, € R7 and v,, € R%.

@ Obviously, rank(M) < rank, (M)

@ Gap can be large. Fix {a1,...,a,»} C R and consider distance matrix
a% 1 —20,1
ag 1 —2a5 1 1 ... 1
M=| . . a? a3 ... a2
: ' : a1 ay ... Qm
a2, 1 —2a,

o rank(M) < 3. [Beasley and Laffey, 2009] showed rank ; (M) = Q(logm).
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Wyner’s Cl for Normalized Nonnegative Matrices

@ Let M € R** be a nonnegative matrix.
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Wyner’s Cl for Normalized Nonnegative Matrices

@ Let M € R** be a nonnegative matrix.
@ We may define

Mz,lf - _
mx () = Tt (@) € ] x (] = X x .
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Wyner’s Cl for Normalized Nonnegative Matrices

@ Let M € R** be a nonnegative matrix.
@ We may define

M,,
M2

Ty (,y) = (2,) € [m] x [k] = X x V.

@ Adiscreterv. W € W is a seed for wxy, or equivalently M, if

X-Ww-=-Y.
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Wyner’s Cl for Normalized Nonnegative Matrices

@ Let M € R** be a nonnegative matrix.
@ We may define

M,,
M2

Ty (,y) = (2,) € [m] x [k] = X x V.

@ Adiscreterv. W € W is a seed for wxy, or equivalently M, if
X-W-Y.

@ Every NMF of
M = Z uwvl

induces a seed W for M.
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Wyner’s Cl for Normalized Nonnegative Matrices

@ Let M € R** be a nonnegative matrix.
@ We may define

M,,
M2

Ty (,y) = (2,) € [m] x [k] = X x V.

@ Adiscreterv. W € Wis a seed for mxy, or equivalently M, if
X-W-Y.

@ Every NMF of
M = Z uwvuT,

induces a seed W for M.
@ Wyner's common information for M is

Cw(M) = Cw(ﬁxy).
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Playing With Definitions

Theorem ([Jain et al., 2013], [Braun and Pokutta, 2013])
Cw (M) < logrank, (M). J
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Playing With Definitions
Theorem ([Jain et al., 2013], [Braun and Pokutta, 2013])

Cw (M) < logrank(M).

Proof.
Let M have an optimal NMF M = " u,v, . Define seed W as
[Ww]a[Vly

Py xy (wlz,y) = Mz, :
arbitrary M, , =0
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Playing With Definitions
Theorem ([Jain et al., 2013], [Braun and Pokutta, 2013])

Cw (M) < logrank(M).

Proof.
Let M have an optimal NMF M = " u,v, . Define seed W as

[Uoz[Valy
—— M;,>0
Pyy|xy (wle,y) = M, T
arbitrary M, , =0

By Bayes rule,
(W) [Vw]y

@y [uw]m’ [Vw] Y’

Pxyw(z,ylw) = T
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Playing With Definitions
Theorem ([Jain et al., 2013], [Braun and Pokutta, 2013])

Cw (M) < logrank(M).

Proof.
Let M have an optimal NMF M = " u,v, . Define seed W as
[Ww]a[Vly

Py xy (wlz,y) = Mz,
arbitrary M, , =0

Mgy >0

By Bayes rule,

W]z [Valy

@y [uw]m’ [Vw] Y’

Pxyw(z,ylw) = 5 (z,y) € X x Y.

So, X — W —Y and
Cw(M) < Ip(XY; W) < HW) <log |W| = logrank (M).

O

Common Information EASIT 2021 58/88
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Gap Between Cw (M) and log rank, (IM)?

@ Consider the diagonal matrix

2t 0 0 0

0 22 0 0

M=_1 |0 0o 2° 0
=12 :

0 0 O om
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Gap Between Cw (M) and log rank, (IM)?

@ Consider the diagonal matrix

2t 0 0 0

0 22 0 0

M=_1 |0 0o 2° 0
=12 :

0 0 O om

o rank, (M) =m
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Gap Between Cw (M) and log rank, (IM)?

@ Consider the diagonal matrix

2t 0 0 0
0 22 0 0
M=_1 |0 0o 2° 0
j=12 :

0O 0 0 ... 2m

o rank, (M) =m
@ But

Cw (M) < H(XY) = H(rx)

< 2 22 2m >
—H N _
2iem ¥ Xjeim ¥ 2jetm ¥

_ Z 2" log < 2
Zje[m] 2 ZjG[m] 2

1€[m]

i
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Gap Between Cw (M) and log rank, (IM)?

@ Consider the diagonal matrix

2t 0 0 0
0 22 0 0
M=_1 |0 0o 2° 0
j=12 :

0O 0 0 ... 2m

o rank, (M) = m
@ But

Cw (M) < H(XY) = H(rx)

< 2 22 2m >
—H N _
Yiem? Xiem 2jetm ¥

2 2!
:—Z .log( .)§2 vm € N.
i et 2T\ D jeim 2
@ Gap can be arbitrarily large.
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Gap Between Cw (M) and log rank, (IM)?

@ Consider the diagonal matrix

2t 0 0 0

0 22 0 0

M=_1 |0 0o 2° 0
j=12 :
0O 0 0 ... 2m

o rank, (M) =m
@ But

Cw (M) < H(XY) = H(rx)

< 2 22 2m >
—H N _
Yiem? Xiem 2jetm ¥

- 2 ( 2
2ierm 2 2jeim ¥

@ Gap can be arbitrarily large.
@ Is the relation between Cyw (M) and log rank (M) fundamental?

i i

)§2 Vm € N.

1€[m]
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])

LetM € R7** be such that [M|y = Y, M, , = 1. Foranye,6 >0, if
n > ng(e, 0, m, k, Cw (M)) is sufficiently large, there exists M. s, € RT”W with

||M®n - Me,(;,’ll,}

<0

and

1
lim lim —logrank; (M, s,)= Cw(M).

el0 n—oco n
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])

LetM € RY** be such that [M|l; = >, ,

M, , =1. Foranye,é >0, if
n > no(e, 0, m, k, Cyw(M

)) is sufficiently large, there exists M. 5, € RT"**" with

||M®n - M€,5.71, S d.

1
and

1
lim lim — logrank, (M, ;5,) = Cw(M).

el0 n—oco n

@ Normalized logarithm of the nonnegative rank of an ¢;-perturbed version of
M®" for large enough n.
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])

LetM € R7** be such that [M|y = Y, M, , = 1. Foranye,6 >0, if
n > ng(e, 0, m, k, Cw (M)) is sufficiently large, there exists M. s, € RTHXW with

||M®n - M€,5.71,

<0

and 1
lim lim — logrank, (M, ;5,) = Cw(M).

el0 n—oco n

@ Normalized logarithm of the nonnegative rank of an ¢;-perturbed version of
ME®&™ for large enough n.

@ TV common information = Wyner’s common information [Cuff, 2012].
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])
LetM € R7** be such that [M|y = Y, M, , = 1. Foranye,6 >0, if
n > no(e, d,m, k, Cw(M)) is sufficiently large, there exists M., 5., € R **" with
||M®” - M€,5.71,H1 < 0.
and ]
lim lim —logrank; (M, s,)= Cw(M).

el0 n—oco n

@ Normalized logarithm of the nonnegative rank of an ¢;-perturbed version of
M®" for large enough n.

@ TV common information = Wyner’s common information [Cuff, 2012].
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])
LetM € R7** be such that [M|y = Y, M, , = 1. Foranye,6 >0, if
n > ng(e, 0, m, k, Cw (M)) is sufficiently large, there exists M. s, € RT"W with
||M®” - M€,5.71,H1 < 0.
and ]
lim lim —logrank; (M, s,) = Cw(M).

el0 n—oco n

@ Normalized logarithm of the nonnegative rank of an ¢;-perturbed version of
M®" for large enough n.

@ TV common information = Wyner’s common information [Cuff, 2012].
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Amortization Comes to the Rescue

Theorem ([Braun et al., 2017])
LetM € R7** be such that [M|y = Y, M, , = 1. Foranye,6 >0, if
n > ng(e, 0, m, k, Cw (M)) is sufficiently large, there exists M. s, € RT”W with
M= = Mg, <6
and ]
lim lim —logrank; (M, s,) = Cw(M).

el0 n—oco n

@ Normalized logarithm of the nonnegative rank of an ¢;-perturbed version of
M®" for large enough n.

@ TV common information = Wyner’s common information [Cuff, 2012].

FullCircle
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@ Introduction: Measures of Information Among Two Random Variables
e Wyner's Common Information

e Rényi Common Information

@ Exact Common Information

e Approximate and Exact Channel Synthesis

@ Nonnegative Matrix Factorization and Nonnegative Rank

G Gacs—Korner—Witsenhausen’s Common Information

e Non-Interactive Correlation Distillation
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Gacs—Kdrner—Witsenhausen’s System

X Y

f(X) <f—O AN Og—> 9(Y)
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Gacs—Kdrner—Witsenhausen’s System

X Y
f g
0 O O

@ (X,Y) ~ Pg,: apair of correlated sources
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Gacs—Kdrner—Witsenhausen’s System

X Y

<f—O/\/Og—>g(Y

@ (X,Y) ~ Pg,: apair of correlated sources

@ Define one-sided e-GKW common information:

1
Tx (€) := liminf *H X
X ( ) n—oo f,g: ]P’[f(X);ég(Y)] (f< ))
Ty (€) := liminf lH (9 (Y))

n—oo f.g: IP’[f(X#g(Y)]
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Gacs—Korner—Witsenhausen'’s Cl

Problems of Control and Tnformatwn Theory, Vol 2 (2), pp 119—162 (1973)

COMMON INFORMATION IS FAR LESS THAN MUTUAL
INFORMATION

P. GACS and J KORNER
(Budupest)
(Received February 5, 1972)
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Gacs—Korner—Witsenhausen'’s Cl

Problems of Control and Tnformatwn Theory, Vol 2 (2), pp 119—162 (1973)

COMMON INFORMATION IS FAR LESS THAN MUTUAL
INFORMATION

P. GACS and J KORNER
(Budupest)
(Received February 5, 1972)

Theorem ([Gécs and Kérner, 1973])

lim TX (6) B lligl Ty (6) = OGKW (X; Y) 5
€

el0
where
Corw (X3Y) := max H(f(X
f9:F(X)=g(Y) )
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Gacs—Korner—Witsenhausen'’s Cl

Problems of Contral and Trjormation Theory, Vol 2 (2), pp 119—162 (19135)

COMMON INFORMATION IS FAR LESS THAN MUTUAL
INFORMATION

!

P. GACS and J KORNER
(Budupest)

(Recewved February 5, 1972) s @
Theorem ([Gacs and Kérner, 1973])

lim TX (6) B hﬁ)l Ty (6) = OGKW (X; Y) 5
€

el0
where
C X;Y) = max H X
caw (X;¥)i= | mex oy H (&)
@ Cokw (X;Y) called Gacs—Kdrner—Witsenhausen’s (GKW’s) Cl
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Gacs—Korner—Witsenhausen'’s Cl

Problems of Contral and Trjormation Theory, Vol 2 (2), pp 119—162 (19135)
COMMON INFORMATION IS FAR LESS THAN MUTUAL
INFORMATION

P. GACS and J KORNER
(Budupest)
(Received February 5, 1972)

Theorem ([Gacs and Kérner, 1973])
lsiﬁ)lTX (€) = leljg Ty (¢) = Caxw (X;Y),

where

C X;Y) = max H X
akw (X;Y) P (f (X))

@ Cokw (X;Y) called Gacs—Kdrner—Witsenhausen’s (GKW’s) Cl

@ Abridged version of GKW’s system as in [Csiszar and Narayan, 2000]
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Gacs—Korner—Witsenhausen'’s Cl

Problems of Control and Tnformatwn Theory, Vol 2 (2), pp 119—162 (1973)
COMMON INFORMATION IS FAR LESS THAN MUTUAL
INFORMATION

P. GACS and J KORNER
(Budupest)
(Received February 5, 1972)

Theorem ([Gacs and Kérner, 1973])
lsif(f)lTX (€) = leljgl Ty (¢) = Caxw (X;Y),

where

C X;Y) = max H X
akw (X;Y) P (f (X))

@ Cokw (X;Y) called Gacs—Kdrner—Witsenhausen’s (GKW’s) Cl
@ Abridged version of GKW’s system as in [Csiszar and Narayan, 2000]

@ Other interesting operational interpretations in [Yu and Tan, 2019a]
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Undesirable Properties of GKW’s ClI

@ Fact: Gacs—Kdrner—Witsenhausen’s Cl = 0 for Gaussian sources and doubly
symmetric binary sources (DSBSes)

@ More unfortunately, we cannot extract even one pair of identical bits from
(X,Y), if (X,Y) is jointly Gaussian or if (X,Y) is a DSBS.

@ How to measure “common information” for this case?

@ Literally, “common information” <= “correlated bits”
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Undesirable Properties of GKW’s ClI

@ Fact: Gacs—Kdrner—Witsenhausen’s Cl = 0 for Gaussian sources and doubly
symmetric binary sources (DSBSes)

@ More unfortunately, we cannot extract even one pair of identical bits from
(X,Y), if (X,Y) is jointly Gaussian or if (X,Y) is a DSBS.

@ How to measure “common information” for this case?

@ Literally, “common information” <= “correlated bits”

@ A Variant of Cl: What is the maximal possible correlation of a pair of bits
that can be extracted from X, Y individually?
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Undesirable Properties of GKW’s ClI

@ Fact: Gacs—Kdrner—Witsenhausen’s Cl = 0 for Gaussian sources and doubly
symmetric binary sources (DSBSes)

@ More unfortunately, we cannot extract even one pair of identical bits from
(X,Y), if (X,Y) is jointly Gaussian or if (X,Y) is a DSBS.

@ How to measure “common information” for this case?

@ Literally, “common information” <= “correlated bits”

@ A Variant of Cl: What is the maximal possible correlation of a pair of bits
that can be extracted from X, Y individually?

@ Coined the binary decision problem [Witsenhausen, 1975],
the noninteractive correlation distillation (NICD) problem [Mossel et al., 2006],
the noninteractive binary simulation problem
[Kamath and Anantharam, 2016]
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@ Introduction: Measures of Information Among Two Random Variables
e Wyner's Common Information

e Rényi Common Information

@ Exact Common Information

e Approximate and Exact Channel Synthesis

@ Nonnegative Matrix Factorization and Nonnegative Rank

0 Gécs—Korner—Witsenhausen’s Common Information

@ Non-Interactive Correlation Distillation

«O0>» «Fr «EHr» «FE)r» EFl= QX



Doubly Symmetric Binary Source (DSBS)

@ In this section, we only consider the DSBS

1+p 1—-0p
_ 4 4
PXY - 1— p 1 +[)
4 4
with correlation p € (0,1), and
(XvY) NP)T;'Y
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Doubly Symmetric Binary Source (DSBS)

@ In this section, we only consider the DSBS

1+p 1—-0p
_ 4 4
4 4
with correlation p € (0,1), and
(X, Y) ~ Pxy

@ If you are interested in other sources, please refer to
[Ahlswede and Gacs, 1976, Borell, 1985,
Carlen and Cordero-Erausquin, 2009, Mossel and Neeman, 2015,
Beigi and Nair, 2016, Yu et al., 2021, Yu, 2021b]...
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Non-Interactive Correlation Distillation

DSBS(p)
X Y

f(X) ~Bern(a) ( )/\/( >—> ~ Bern(b)

max P(f(X) = g(Y)) or equivalently, max P(f(X) =g(Y)=1)
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Non-Interactive Correlation Distillation

@ Formally, for a, b € [0, 1], define the Forward Joint Probability as

7(n)
' (ab) = max X)=g9(Y)=1
(,0) £,9:{0,13"—{0,1}:P(f (X)=1)<a, ) =9(¥) )
P(g(Y)=1)<b
= P% (Ax B =1 =1
sl by e Xy AX B (=149 =1p)
Py (B)<b
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Non-Interactive Correlation Distillation

@ Formally, for a, b € [0, 1], define the Forward Joint Probability as

=(n)
' (ab) = max X)=g9(Y)=1
(a,0) £,9:{0,1}" —{0,1}:P(f(X)=1)<a, ) =9(¥) )
P(g(Y)=1)<b
= PYyv (AXx B =1 =1
P S Xy (AxB),  (f=1a,9=1p)
Py (B)<b
@ Define the Reverse Joint Probability as
™ (a,b) := i Py (AX B
' (a,b) B0 ()20, Xy (A x B)
Py (B)>b
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Non-Interactive Correlation Distillation

@ Formally, for a, b € [0, 1], define the Forward Joint Probability as

=(n)
' (ab) = max X)=g9(Y)=1
(a,0) £,9:{0,1}" —{0,1}:P(f(X)=1)<a, ) =9(Y) )
P(g(Y)=1)<b
= PYyv (AXx B =1y,9g=1
P S Xy (AxB),  (f=1a,9=1p)
Py (B)<b
@ Define the Reverse Joint Probability as
™ (a,b) := i Py (AX B
[ (a0 ABC{O1)PY(4)>a, v ( )
Py (B)>b
@ Fora =2 b= 2 (with integers M, N), the “inequalities” in the constraints

can be replaced by “equalities”
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Non-Interactive Correlation Distillation
@ Formally, for a, b € [0, 1], define the Forward Joint Probability as

™ (a,b) := max
£,9:{0,1}" —{0,1}:P(f(X)=1)<a,
P(g(Y)=1)<b

— P (Ax B —14.9=1
B0 % )<a, Yy (AxB), (f=1a,9=1p)
P2 (B)<b

@ Define the Reverse Joint Probability as

™ (a,b) := i Py (Ax B
[P (@b)=, @i, . Py (AxB)
Py (B)>b

@ Fora =2 b= 2 (with integers M, N), the “inequalities” in the constraints

can be replaced by “equalities”
@ Equivalence:
T (1 —a,b) =b—TC (a,b),

(o0)

where T, L(**) denote the pointwise limits of f("), '™ asn — occ.
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Asymptotic Regimes and Exponents

Asymptotic cases as n — oo
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Asymptotic Regimes and Exponents
Asymptotic cases as n — oo

@ Central Limit (CL) regime: a = 27, b = 277 are fixed

(Forward and Reverse) CL Exponents: For «, 8 € (0, 00),

O (. f) = —logT'"™ (27%.27%) B (a.8) = ~log L™ (27*.277)
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Asymptotic Regimes and Exponents
Asymptotic cases as n — oo
@ Central Limit (CL) regime: a = 27, b = 277 are fixed

(Forward and Reverse) CL Exponents: For «, 8 € (0, 00),

O (@, 8) == —10gT" (27%,277) B (a,8) := —1ogIT™ (27%,27")

@ Large Deviation (LD) regime: a = 27", b = 2~ are exponentially small

(Forward and Reverse) LD Exponents: For «, 5 € (0, 1),

L 1og T (2*“"’,2*”6) 8™ (a0, B) 1= — L log 1™ (2*”“,2*”6)
13 n

7

@8113) (avﬂ) =
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Asymptotic Regimes and Exponents
Asymptotic cases as n — oo

@ Central Limit (CL) regime: a = 27, b = 277 are fixed

(Forward and Reverse) CL Exponents: For «, 8 € (0, 00),

@(c’}j (a, B) == —logf(n) (270‘,275> (n)( ,B) = logE(”) (270‘, 276>

@ Large Deviation (LD) regime: a = 27", b = 2~ are exponentially small

(Forward and Reverse) LD Exponents: For «, 5 € (0, 1),

n 1 T\ —na -n n) 1 n —na —n
Ofp (@, 8) i= = 1ogT"" (277,277} O (a, §) := = logL™ (27,277

e Denote 05, © @CL , 04, @LD , as the pointwise limits as n — oc.
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Achievability: Hamming Subcubes
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Achievability: Hamming Subcubes

@ An (n — k)-subcube C,,_y is a set of x with k components fixed
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Achievability: Hamming Subcubes

@ An (n — k)-subcube C,,_y is a set of x with k components fixed

» Special case C,_1: e.g., {1} x {0,1}"* (Indicator x + ; called a dictator
function)
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Achievability: Hamming Subcubes

@ An (n — k)-subcube C,,_y is a set of x with k components fixed

» Special case C,_1: e.g., {1} x {0,1}"* (Indicator x + ; called a dictator
function)
@ Caseofa=b=2"%: A= B =C,_ (identical) =

1+p\"
P%y (A x B) = Pxy(1,1)F = (4)

A=1- B =_C,_; (anti-symmetric) —-
1_\F
P2y (A x B) = Pxy(1,0)% = (p)
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Achievability: Hamming Balls (CL Regime)

@ Hamming Ball: B, (0) := {x : du(x,0) <r} < {x: > z; <r}
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Achievability: Hamming Balls (CL Regime)

@ Hamming Ball: B, (0) := {x : du(x,0) <r} < {x: > z; <r}
@ CL regime: Choose A =B, (0), B =B, (0) with

™ =15 + A?f,s,,, =3+ “\—f where \,n € R
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Achievability: Hamming Balls (CL Regime)

@ Hamming Ball: B, (0) := {x : du(x,0) <r} < {x: > z; <r}
@ CL regime: Choose A =B, (0), B =B, (0) with

™ =15 + A?f,s,,, =3+ “\—f where \,n € R

@ By the univariate and multivariate CL theorems,
Px(A)—=@(\), P (B)=2(), Py (AxB)=2,(\nu)
where @ is the CDF of the standard Gaussian, and ®,(-, -) is the CDF of the

. . . . 1
zero-mean bivariate Gaussian with covariance matrix [p ﬂ .
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Achievability: Hamming Balls (CL Regime)

@ Achievable CL probabilities:

(o0)

' (a,b) > A,(a,b) (by concentric balls)

» Bivariate normal copula (or Gaussian quadrant probability function):

Ay (a,b) == @, (&' (a), @' (b))
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Achievability: Hamming Balls (CL Regime)

@ Achievable CL probabilities:

(o0)

' (a,b) > A,(a,b) (by concentric balls)

» Bivariate normal copula (or Gaussian quadrant probability function):
Ap(a,b) =@, (27" (a), 27" (1))
@ By equivalence of forward and reverse joint probabilities,
' (a,b) < A_,(a,b) (by anti-concentric balls)

» A_, (a,b) is attained by anti-concentric balls A = B,., (0),B = B;,, (1)
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Achievability: Hamming Balls (CL Regime)
@ Achievable CL probabilities:

(o0)

' (a,b) > A,(a,b) (by concentric balls)

» Bivariate normal copula (or Gaussian quadrant probability function):

Ay (a,b) == @, (&' (a), @' (b))

@ By equivalence of forward and reverse joint probabilities,
' (a,b) < A_,(a,b) (by anti-concentric balls)

» A_, (a,b) is attained by anti-concentric balls A = B,., (0),B = B, (1)
@ Considering exponents,

05 (a,8) < Ocr (@, 8)  O¢r (e, f) = BOcr (@, B) .

» Exponents of A, and A_:

O¢y (o, B) == —log A, (e_a&_ﬁ) . OcL (o, B):=—logA, (6

_a,e_ﬂ)
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Achievability: Hamming Spheres (LD Regime)
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Achievability: Hamming Spheres (LD Regime)

@ Hamming Sphere: For r € [0: n], S, (0) := {x : du(x,0) = r} <

{x: 0 @ = v}
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Achievability: Hamming Spheres (LD Regime)

@ Hamming Sphere: For r € [0: n], S, (0) := {x : du(x,0) = r} <

{x: Xz =r}

@ It can be regarded as a type class with type (A, A) in Hamming space, where
A=rsand A:=1- A
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Achievability: Hamming Spheres (LD Regime)

@ Hamming Sphere: For r € [0: n], S, (0) := {x : du(x,0) = r} <

{x: Xz =r}

@ It can be regarded as a type class with type (A, A) in Hamming space, where
A=rsand A:=1- A

@ LD regime: Choose A =S, (0),B =S;, (0) with r,, = An, s,, = un where
A€ [0,1]
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Achievability: Hamming Spheres (LD Regime)

By LD theory (or Sanov’s theorem),
~log P (4) = D (A, A) [1Px) =1 - Hy (3
~log B (B) = D () | ) = 1~ H (1)
S log Py (Ax B) =B (A ), (1) [Pxy)
where the minimum-relative-entropy over couplings of (Qx, Qv ) is

D(Qx,Qy|P = i D (C P
(@ @I = o 0 P Qv IPxy)

with C (Qx, Qy) := {Qxy with marginals Qx, Qy } denoting the coupling set of
Qx and Qy.
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Achievability: Hamming Spheres (LD Regime)

[Ordentlich et al., 2020] proved...

@ Optimizing D (Qx, Qy || Pxy) over feasible Qx := (A, A), Qy = (u, i) =

e <Op (a,8) = i D(Qx,Qy|P
Y10 (aaﬂ) >Yp (0/ ) QX,QyiDIFC;I)l(HPX)ZO- (QX/QYH Xy),
D(Qy ||Py)>p

=(c0) -
© a,B) > O1p (a,3) = max D N P .
Lo (a,p) Lp (@, B) Qx0vibX p y<a, (Qx,Qv||Pxy)

D@y ||Py)<B

@ Attained by concentric and anti-concentric Hamming spheres or balls
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Achievability: Hamming Spheres (LD Regime)
[Ordentlich et al., 2020] proved...
@ Optimizing D (Qx, Qy || Pxy) over feasible Qx := (A, A), Qy = (u, i) =

e a,B) <O, (a,B) := min D , Pxv),
O1p (a,8) <O p (o, B) 00y D o (Qx,Qy||Pxy)
D(Qvy||Py)>B
=(00) -
(C] a,B) > Op (a,p) = max D , Qv || Pxy).
Lo (@, B3) > OLp (a, ) Ox.Qv DO 1Px)<a, (Qx,Qyl|Pxy)
D(Qy ||Py)<p

@ Attained by concentric and anti-concentric Hamming spheres or balls

[Ordentlich et al., 2020] conjectured...

Conjecture (Ordentlich—Polyanskiy—Shayevitz (2020))
For the DSBS and «, 5 € (0, 1),

089 (0, 8) £ O1p (0, 8), O (e, 8) = Oup (e, B).
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Exponents induced by Hamming Spheres for p = 0.9

OLp(a, B)

@CL(O‘)/B)

<5

0%
0
%
XN

X
<
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3
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Exponents induced by Hamming Spheres for p = 0.9

OLp(a, )

Remark that ©1,p looks concave! Has implications for OPS’ conjecture.
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Exponents induced by Hamming Spheres for p = 0.9
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Exponents induced by Hamming Spheres for p = 0.9

@LD(aa ﬂ)

=
5535
<SS
S
SIS
ISR
SRS
s
aessisestlans ess
R
sSSESE
Risenlensy SesSigutiges
TS OTLSSOTT SO Sos S,
el
= S
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Remark that ©; , looks convex! Has implications for OPS’ conjecture.
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Comparison: Hamming Subcubes vs. Hamming Balls

Regime Central Limit Large Deviation

a,b fixed and large a, b \ fixed but small a,b | exp. small a,b
Subcubes Better Worse Worse
Balls Worse Better Better
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Comparison: Hamming Subcubes vs. Hamming Balls

Regime Central Limit Large Deviation

a,b fixed and large a, b \ fixed but small a,b | exp. small a,b
Subcubes Better Worse Worse
Balls Worse Better Better

@ For large a, b, subcubes are better; for small a, b, balls are better

Achievability for T' X'\(a, a)

10°

Balls
0 Subcubes
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Natural Questions on Optimality |

@ Question: Are Hamming subcubes optimal for large a, b (CL regime)?

1 119

@ Are subcubes optimal fora = b € {3, 1}7

@ Mossel's mean-1/4 stability problem
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Natural Questions on Optimality |

@ Question: Are Hamming subcubes optimal for large a, b (CL regime)?

11

@ Are subcubes optimal fora =b € {3, 1 }7

@ Mossel's mean-1/4 stability problem

Borell's Result and Open Problems

@ Borell (85): In Gaussian case the maximum and minimum of
P[x € A,y € B] as a function of P[A] and P[B] is obtained
for parallel half-spaces.

o Do not know what is the optimum in {—1,1}". In particular:
@ Open Problem:

Jlim min(P[X € A,Y € B]: A,B C {~1,1}", P[A] = P[B] = 1/4)

and similarly for max.

o Partition to 3 or more parts even in Gaussian space.
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Natural Questions on Optimality I

@ Question: Are Hamming balls optimal for exp. small a, b (LD regime)?
@ Ordentlich—Polyanskiy—Shayevitz’'s conjecture

@ Excerpt from [Ordentlich et al., 2020]...
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Natural Questions on Optimality I

@ Question: Are Hamming balls optimal for exp. small a, b (LD regime)?
@ Ordentlich—Polyanskiy—Shayevitz’'s conjecture

@ Excerpt from [Ordentlich et al., 2020]...

Our interest is in the greatest and smallest exponential decay
rate of Pxy (A x B) among all possible sets A, B of sizes 2"
and 2", respectively. To that end, for fixed 0 < a, 5 < 1 we
define

o 1
E(a, B,p) 2 —limsup max —log Pxy (4 x B), (8)
(@, 5,p) ISP 3y 7 0B P € )

E(a,B,p) 2 lglll’il)f (An)].i(l}.?) % log Pxy(Ax B), (9)
where maxy 4y, () and ming 4y (g denote optimizations over
the sequences of sets A, C {0,1}", B, C {0,1}", n € Zy
such that

[An| = 2netom) |, | = gnétoln)

Our main conjecture is that both E(av, 3, p) and E(«, 3, p)
are optimized by concentric (resp., anti-concentric) Ham-
ming balls. In this work we show partial progress towards
establishing this conjecture. Our conjecture is in line
with the well-known facts that among all pairs of sets
A,B c {0,1}" of given sizes, the maximal distance
dmax (A, B) = maxXaea pep d(a, b) is minimized by concentric
Hamming (quasi) balls [19], [20], whereas the minimum
distance dmin(A, B) = mingeapep d(a,b) is maximized by
anti-concentric Hamming (quasi) balls [21].
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Converse fora = b = %: Subcubes/dictators optimal?
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Converse fora = b = %: Subcubes/dictators optimal?

@ Confirmed positively by Witsenhausen (1975) using maximal correlation
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Converse fora = b = %: Subcubes/dictators optimal?

@ Confirmed positively by Witsenhausen (1975) using maximal correlation

@ The (Hirschfeld—Gebelein—Rényi) maximal correlation

P (X3Y) = sup p(f(X):g(Y)),

» p(U; V) := ——HYYN_ s the Pearson correlation coefficient
var[U]var[V]

» the supremum is taken over all real-valued functions with finite variances
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Converse fora = b = %: Subcubes/dictators optimal?

@ Confirmed positively by Witsenhausen (1975) using maximal correlation

@ The (Hirschfeld—Gebelein—Rényi) maximal correlation

P (X3Y) = sup p(f(X):g(Y)),

» p(U; V) := ——HYYN_ s the Pearson correlation coefficient
var[U]var[V]

» the supremum is taken over all real-valued functions with finite variances
@ Tensorization: For (X,Y) = {(X,;,Y;)}, iid,

pm(X5Y) = pm (X;Y).
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Converse fora = b = %: Subcubes/dictators optimal?

@ Confirmed positively by Witsenhausen (1975) using maximal correlation

@ The (Hirschfeld—Gebelein—Rényi) maximal correlation

P (X3Y) = sup p(f(X):g(Y)),

» p(U; V) := ——HYYN_ s the Pearson correlation coefficient
var[U]var[V]

» the supremum is taken over all real-valued functions with finite variances
@ Tensorization: For (X,Y) = {(X,;,Y;)}, iid,
pm(X5Y) = pm (X;Y).
@ Data Processing Inequality (DPI): For a Markov chainU — X — Y — V,

pm(U; V) S pm(X; Y)
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Converse fora = b = %: Subcubes/dictators optimal?

@ Confirmed positively by Witsenhausen (1975) using maximal correlation

@ The (Hirschfeld—Gebelein—Rényi) maximal correlation

P (X3Y) = sup p(f(X):g(Y)),

» p(U; V) := ——HYYN_ s the Pearson correlation coefficient
var[U]var[V]

» the supremum is taken over all real-valued functions with finite variances
@ Tensorization: For (X,Y) = {(X,;,Y;)}, iid,
P (X5 Y) = pi (X5 Y).
@ Data Processing Inequality (DPI): For a Markov chainU — X — Y — V,
pm(U; V) < pm(X5Y).
@ Forbinary XY, pn(X;Y) = |p(X;Y)].
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Converse fora = b = %: Subcubes/dictators optimal?

Theorem ([Witsenhausen, 1975])
Leta =1 — a. Forany A, B with P} (A) = a, P}(B) = b,

ab — pVaabb < Py (A x B) < ab + pV aabb.
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Converse fora = b = %: Subcubes/dictators optimal?

Theorem ([Witsenhausen, 1975])
Leta =1 — a. Forany A, B with P} (A) = a, P}(B) = b,

ab — pVaabb < Py (A x B) < ab + pV aabb.

Proof: SettingU =14 (X),V =15 (Y),wehaveU - X -Y -V

|PYy (A x B)—ab|
Vaav/bb

lp(U; V)
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Converse fora = b = %: Subcubes/dictators optimal?

Theorem ([Witsenhausen, 1975])
Leta =1 — a. Forany A, B with P} (A) = a, P}(B) = b,

ab — pVaabb < Py (A x B) < ab + pV aabb.

Proof: SettingU =14 (X),V =15 (Y),wehaveU - X -Y -V

|PYy (A x B)—ab|
Vaav/bb

lp(U; V)

=pm(U;V)  [Binary]
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Converse fora = b = %: Subcubes/dictators optimal?

Theorem ([Witsenhausen, 1975])
Leta =1 — a. Forany A, B with P} (A) = a, P}(B) = b,

ab — pVaabb < Py (A x B) < ab + pV aabb.

Proof: SettingU =14 (X),V =15 (Y),wehaveU - X -Y -V

|P%y (A x B) —ab|
aaV/bb

lp(U; V)

=pm(U;V)  [Binary]
<pm(X;Y)  [DPI]
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Converse fora = b = %: Subcubes/dictators optimal?

Theorem ([Witsenhausen, 1975])
Leta =1 — a. Forany A, B with P} (A) = a, P}(B) = b,

ab — pVaabb < Py (A x B) < ab + pV aabb.

Proof: SettingU =14 (X),V =15 (Y),wehaveU - X -Y -V

|P%y (A x B) —ab|
aaV/bb

lp(U; V)

=pm(U;V)  [Binary]
< p(X5Y)  [DPI]
= pn(X;Y) [Tensorization]
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Converse fora = b = %: Subcubes/dictators optimal?

Important Consequence:

@ Fora=b=1/2,

1—p

1
— L < Ph(AxB) < 1te

4
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Converse fora = b = %: Subcubes/dictators optimal?

Important Consequence:
@ Fora=b=1/2,

1—p

1
— L < Ph(AxB) < 1te

4

@ Upper bound is attained by
fx)=g(x)=a

and lower bound by

f(X) =—9g (X) = x;.
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Converse fora = b = %: Subcubes/dictators optimal?

Important Consequence:

@ Fora=b=1/2,

- |
T”gP;gY(AxB)g%.

@ Upper bound is attained by

and lower bound by

f(X) =—9g (X) = x;.

@ Dictators (subcubes) are optimal fora = b =1/2, i.e.,
22 4 22 4
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Converse fora = b = }1: Are subcubes optimal?
—— Mossel’s mean-1/4 stability problem
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Converse fora = b = }1: Are subcubes optimal?
—— Mossel’s mean-1/4 stability problem

@ Confirmed positively by [Yu and Tan, 2021] using Fourier analysis
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Converse fora = b = }1: Are subcubes optimal?
—— Mossel’s mean-1/4 stability problem

@ Confirmed positively by [Yu and Tan, 2021] using Fourier analysis

@ Fourier coefficients of f : {0,1}" — {0,1} are

1))
anf !
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Converse fora = b = }1: Are subcubes optimal?
—— Mossel’s mean-1/4 stability problem

@ Confirmed positively by [Yu and Tan, 2021] using Fourier analysis

@ Fourier coefficients of f : {0,1}" — {0,1} are
(x y)
=3 Z fx

@ Fourier expansion of f is

=Y Fy) ()Y

y
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Converse fora = b = }1: Are subcubes optimal?
—— Mossel’s mean-1/4 stability problem

@ Confirmed positively by [Yu and Tan, 2021] using Fourier analysis

@ Fourier coefficients of f : {0,1}" — {0,1} are
(x y)
=3 Z fx

@ Fourier expansion of f is

=Y Fy) ()Y

y

@ Define the k-degree Fourier weight as
= f)’
lyl=k

where |y| denotes the Hamming weight of y.
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Converse fora = b = i: Are subcubes optimal?

@ Properties: For a Boolean f with mean a,
Wolfl=a> Y Wilf]=a
k=0

and
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Converse fora = b = i: Are subcubes optimal?

@ Properties: For a Boolean f with mean a,
Wolfl=a> Y Wilf]=a
k=0

and

@ Linear Programming bound on W1 [f] [Fu et al., 2001, Yu and Tan, 2019b]:

2a(va—a) 0<a<1/4

Wi[f] < ¢(a):= {a/2 1/4<a<1/2
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Converse fora = b = i: Are subcubes optimal?

@ Properties: For a Boolean f with mean a,
Wolfl =a® Y Wylfl=a
k=0

and

@ Linear Programming bound on W1 [f] [Fu et al., 2001, Yu and Tan, 2019b]:

{Qa(\/ﬁ—a) 0<a<1/4

Wif] <¢(a) = 0)2 1/4<a<1/2

@ Fact (Cauchy—Schwarz inequality):
P(f(X) =g(Y) =1) <max{P (f(X) = f(Y) =1),P(9(X) = g(Y) = 1)}

Suffices to consider identical Boolean functions for T (a,a).
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Converse fora = b = i: Are subcubes optimal?

Theorem ([Yu and Tan, 2021])

=(n)

T 2

(a,0) < a® + pp (a) + p* (a — a® — o (a).
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Converse fora = b = i: Are subcubes optimal?

Theorem ([Yu and Tan, 2021])

e (a,a) < a®+ pp (a) + p* (a —a® — ¢ (a)).

@ Consequence: For a = 1/4, the upper bound reduces to (ﬁ—p)2 =

2
s (1 1Y _ (Lp
4" 4 4

for n > 2, attained by (n — 2)-subcubes!
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Converse fora = b = i: Are subcubes optimal?

Theorem ([Yu and Tan, 2021])

e (a,a) < a® + pp (a) + p? (a — a® — ¢ (a)) .

@ Consequence: For a = 1/4, the upper bound reduces to (11—")2 =

2
) }’} _ (1t
4°4 4
for n > 2, attained by (n — 2)-subcubes!

@ Resolution of forward part of Mossel’'s mean-1/4 stability problem!
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Converse fora = b = i: Are subcubes optimal?

Theorem ([Yu and Tan, 2021])

e (a,a) < a® + pp (a) + p? (a — a® — ¢ (a)) .

@ Consequence: For a = 1/4, the upper bound reduces to (11—")2 =

2
) }’} _ (1t
4°4 4
for n > 2, attained by (n — 2)-subcubes!

@ Resolution of forward part of Mossel’'s mean-1/4 stability problem!

@ However, ['™) (1, 1) is still open!
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Converse for LD: Strong Small-Set Expansion Theorem

Theorem (Strong Small-Set Expansion [Yu et al., 2021, Yu, 2021b])

Foranyn > 1 and «, 3 € (0,1],
O (@, 8) > L[O1p] (0, 8) and
@irg (Oé,ﬁ) S U I:@LD] (a75)a

where L [f] and U [f] respectively denote the lower convex and upper concave
envelopes of a function f.
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Converse for LD: Strong Small-Set Expansion Theorem

Theorem (Strong Small-Set Expansion [Yu et al., 2021, Yu, 2021b])

Foranyn > 1 and «, 3 € (0,1],
O (@, 8) > L[O1p] (0, 8) and
@gg (Oé,ﬁ) S U I:@LD] (a75)a

where L [f] and U [f] respectively denote the lower convex and upper concave
envelopes of a function f.

@ Recall: ©; (a, ), OLD (a, 3) are achieved by spheres/balls
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Converse for LD: Strong Small-Set Expansion Theorem

Theorem (Strong Small-Set Expansion [Yu et al., 2021, Yu, 2021b])

Foranyn > 1 and «, 3 € (0,1],
O (@, 8) > L[O1p] (0, 8) and
@gg (aaﬁ) S U I:éLD:I (Oé,ﬁ),

where L [f] and U [f] respectively denote the lower convex and upper concave
envelopes of a function f.

@ Recall: ©; (a, ), OLD (a, 3) are achieved by spheres/balls

@ Consequence: Time-sharing certain Hamming spheres/balls is optimal in LD
regime! — A weaker version of OPS’s conjecture
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Converse for LD: Strong Small-Set Expansion Theorem
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Converse for LD: Strong Small-Set Expansion Theorem

Lemma ([Yu, 2021a])

O p is convex, and OLp fs concave.
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Converse for LD: Strong Small-Set Expansion Theorem

Lemma ([Yu, 2021a])

O p is convex, and OLp fs concave.

o — L [@LD] = @LD and U [@LD] = @LD-
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Converse for LD: Strong Small-Set Expansion Theorem

Lemma ([Yu, 2021a])

O p is convex, and OLp fs concave.

o — L [@LD] = @LD and U [@LD] = éLD-
@ Substituting these to Strong SSE Theorem —>
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Converse for LD: Strong Small-Set Expansion Theorem

Lemma ([Yu, 2021a]) J

O p is convex, and O1,p is concave.

o — L [QLD] = @LD and U [@LD] = @LD-
@ Substituting these to Strong SSE Theorem —>

OPS'’s conjecture is true:
Balls/spheres are optimal in LD regime!
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Converse for LD: Strong Small-Set Expansion Theorem

Lemma ([Yu, 2021a])

O p is convex, and OLp fs concave.

o — L [@LD] = @LD and U [@LD] = @LD-
@ Substituting these to Strong SSE Theorem —>

OPS'’s conjecture is true:
Balls/spheres are optimal in LD regime!

@ Note:

» The limiting cases as p — 0 or 1 were previously proven in
[Ordentlich et al., 2020].

» The special case with a = 3 was previously proven in
[Kirshner and Samorodnitsky, 2021].
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