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ABSTRACT
In this paper, we demonstrate a new IMU-based wearable
system (dubbed MANA or Mobility ANAlytics) for measuring
gait in a clinical setting. The design process and choices that
were made to ensure that the technology was invisible and
accessible are described. We collect a rich and diverse dataset
of walking data from sixty participants, including forty people
with Parkinson’s Disease (PD). The system is then validated
in a clinical setting with this dataset. We present novel and
innovative algorithms to measure common gait parameters.
The system is able to estimate these gait parameters with high
accuracy, with a mean absolute error of 4.0 cm for stride length
and 2.6 cm for step length, outperforming all state-of-the-art
methods that included data from people with PD.
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INTRODUCTION
The number of people aged 60 and over in the world is ex-
pected to more than double in the next forty years, from around
900 million people in 2015 to more than 2 billion in 2050 [26].
As a result, diseases that overwhelmingly affect older people
such as stroke, osteoporosis (leading to osteoporotic fracture),
and neurodegenerative disorders (e.g., Alzheimer’s disease,
Parkinson’s Disease) will be a heightened economic and logis-
tical challenge for society. The evaluation of these afflictions
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involves a skilled medical professional, requires specialised
equipment, and is both expensive as well as prone to human
error. Therefore, inexpensive, scalable, accurate, objective,
and, most importantly, accessible systems to help manage and
diagnose such conditions are urgently needed.

A key consideration when designing any accessible or assistive
technology is that there is often an implicit or explicit stigma
associated with its use. It is important to take into account
issues such as visibility of assistive technologies [10], cus-
tomisability [33] and device aesthetics, device necessity and
usage context [7], social acceptability, and age appropriate-
ness, all common factors in creating a stigma that may lead to
reducing the adoption of assistive technologies [29], to ensure
that it is not only user-friendly but also that the stigmatisation
of its users is kept to a minimum. To meet these requirements,
we use a user-centred iterative design approach which consid-
ers the users needs at every stage of the design process [19].
In this process, understanding the user and their situation is of
paramount importance [38].

In this study, our targeted users are people with Parkinson’s
Disease (PD). PD is a neurodegenerative disorder with no
known cure. People with PD often have a decrease in the
control of motor functions known as “parkinsonisms”, such as
bradykinesia (slowness of movement), rest tremors, rigidity,
and postural and gait impairment. Due to the aforementioned
aging population, its incidence is on the rise. Indeed, more
than ten million people suffer from the condition1.

Experiments have shown that even whilst on medication peo-
ple with PD show a reduction in gait parameters such as ca-
dence and stride length relative to age-matched healthy con-
trols [28, 20]. In addition, people with PD attempting to
perform motor tasks at a constant rate show larger variation
than healthy controls performing the same tasks. For example,
a study showed that people with PD have a larger step time
variability (7%) than healthy controls (4%) [8]. Gait measure-
ment in a clinical setting is normally quantified using pressure

1http://parkinson.org/Understanding-Parkinsons/
Causes-and-Statistics/Statistics
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sensitive walking mats [22], heel-mounted force-sensing sen-
sors (or footswitches) [13], or motion-capture cameras [24].
All of these systems are costly, non-portable, often require
either technical or clinical expertise to use, and as a result do
not scale easily.

Additionally, medical specialists such as neurologists are a
scarce resource in most countries, and smaller community hos-
pitals in such countries are ill-equipped to make an accurate di-
agnosis of PD or even perform a mobility assessment, forcing
(often frail) older people to travel a long distance to hospitals
in large cities. To address this critical need, we demonstrate
a cost effective and easily deployable Inertial Measurement
Unit (IMU)-based system dubbed MANA (Mobility ANAlyt-
ics) to ensure that long term mobility assessment becomes a
reality for those with motor disabilities associated with PD.
The system is low-cost, wearable, scalable, and suitable for
long-term use in hospital and home settings.

Contributions
1. We demonstrate a mobility analysis system, including an

IMU-based body sensor network (two sensors embedded in
shoes, and one on the waist), a mobile application and a web
service for data analysis and visualisation. We designed and
developed these sensors to be non-invasive and invisible for
day-to-day use, and practical for people with PD.

2. We propose novel and accurate gait analysis algorithms by
fusing accelerometer and gyroscope data, combining mul-
tiple sensors, and utilising kinematic physical constraints
(such as that the shoe-embedded sensor is stationary at
middle-stance). We also use a machine learning approach
using multi-layer perceptrons to estimate gait parameters.
The best algorithm accuracy is found to be a mean abso-
lute error of stride length: 4.0 cm, and step length: 2.6 cm,
outperforming existing methods [3, 36, 34].

3. We collect a rich dataset of the walking of 60 participants,
including 40 people with PD (in four different stages of the
disease). The dataset is diverse, with stride lengths ranging
from 29 cm to 159 cm, and step lengths ranging from 12
cm to 82 cm.

4. We validate our MANA system and algorithms on this
dataset of 60 participants.

This paper is laid out as follows. The next section contains
relevant related work. Then we detail the MANA system,
and its design and development. Following that section, we
describe the data collection experiment. Then we introduce
novel algorithms and show an analysis of the data collected.
After the analysis, we describe the accuracy and performance
of our system. Finally, in the last section we include future
work and directions, as well as conclusions.

RELATED WORK
Gait impairment is a typical symptom of PD [28, 20], and
the gait of people with PD has been studied extensively in
the medical literature [13, 11]. Parkinsonian gait differs from
that of healthy individuals in multiple ways and is therefore
used in diagnosis. People with PD may have shuffling steps,

reduced stride length, increased gait instability, reduced arm
swing, and freezing of gait [15].

A standard non-invasive PD test is mobility assessment, which
aims to quantify movement and give a clinical measure that
reflects the degree of mobility impairment. It is used in di-
agnosis and medical treatment planning in the early phases
of the disease. In the latter phases, mobility assessment may
also be frequently necessary to monitor disease progression.
Mobility assessment includes the quantification of both the
lower and upper motor performance. Specifically, for lower
motor performance, stride (and step) time and length are the
most fundamental and important measures. Additionally, gait
variability measures such as traditional statistical quantities
(e.g. coefficient of variation) [4], de-trended fluctuation analy-
sis [6], and phase coordination index [31] are extremely useful
for clinical evaluation. Early diagnosis of PD has a much
lower accuracy (53%) than those who have had it for 5 years
or more (88%) [1].

In clinical gait analysis, stride length and stride time are im-
portant and fundamental gait quantities which need to be mea-
sured. This need has given rise to a large number of highly
specialised and expensive systems to measure gait parameters,
such as the pressure sensitive walking mat GAITRite2, the
motion-capture camera array Vicon3, and IMU-based wearable
sensors such as APDM Opal4. However, these systems have
drawbacks and are prohibitively expensive. GAITRite and
Vicon are primarily limited to clinical usage as they require
dedicated laboratory space and technical expertise, precluding
their use in outdoor environments or in the home. GAITRite
does not capture the full gait cycle or upper limb movement,
as it can only track foot steps on the mat. Vicon systems can
capture the entire body movement in 3D space, although they
require the user to wear multiple reflective markers on each
extremity which is time-consuming, inconvenient and obstruc-
tive. These systems are unwieldy, and are not usable outside
of a hospital or gait laboratory.

In contrast, IMU-based wearable sensors are portable, conve-
nient, scalable, and do not require a clinical laboratory setting.
They can capture whole body motion by wearing sensors
on the extremities. APDM provides a proprietary software
package (Mobility Lab) to compute gait parameters from the
APDM Opal sensors. However, the Opal sensors do not sup-
port standard wireless protocols (such as Bluetooth) necessi-
tating the use of additional hardware for data collection. Like
other commercial IMU sensor boards (for example Shimmer5),
APDM does not provide a low level API to perform custom
computations on-board the sensor (such as gait analysis or
fall detection). Although IMU-based sensors have clear ad-
vantages, calculating the basic gait parameters such as stride
length is still a complex and challenging research problem.

IMU-based displacement (e.g., stride or step length) estima-
tion algorithms involve the fusion of triaxial accelerometer and

2http://www.gaitrite.com
3http://www.vicon.com
4http://www.apdm.com/wearable-sensors
5http://www.shimmersensing.com
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Figure 1. MANA system overview.

gyroscope data, and they can be generally grouped into three
categories: machine learning-based regression methods [37],
Kalman filter-based fusion algorithms [16], and double integra-
tion of acceleration [5]. Machine learning-based algorithms
require a large and comprehensive dataset to train a model that
can be generalised to new participants. However, their gen-
eralisability needs further validation as most existing studies
have a limited number of test participants. Fusion algorithms
based on Kalman filters usually require the use of a magne-
tometer as a reference of orientation, and thus are not suitable
for pure IMU-based systems such as ours. Methods based on
double integration of acceleration are more straightforward
and computationally efficient, although they need to cope with
integration drift due to sensor noise and numerical computa-
tion errors. A common method to mitigate integration drift
is resetting the integration value to zero after each stride [12].
However, such resetting methods may introduce large errors
to the stride length estimation if the IMU is not attached to an
appropriate and consistent position on the foot [27]. Therefore,
many of these methods require improvement in measurement
accuracy and usability to be deployable in non-laboratory set-
tings.

MANA SYSTEM
In order to mitigate the drawbacks of the systems described,
we designed MANA to be an inexpensive, portable and scal-
able mobility analysis system built on open standards such as
Bluetooth low energy (BLE) and websockets such that it is
platform independent and future proof. The most important
design considerations were to make the sensors invisible and
user friendly, thus reducing the stigma associated with their
use. In this section, we describe the components of the MANA
system and the design considerations made.

System Description
MANA consists of a series of physical devices, communi-
cation protocols, motion analysis algorithms, and software
applications. MANA has three main physical components:
wearable IMU-based sensors (Sensors), an application run-
ning on a mobile device (Collator), and a web application
hosted on cloud servers (Hub) (see Figure 1). The general

Figure 2. The sensor in its case, and the location of sensor in the shoe.

workflow of the system is that a participant can wear the sen-
sors to record motion data, which in turn uploads the data
over Bluetooth Low Energy (BLE) to a smartphone via the
installed Collator app. The Collator further uploads the data
to the server for real-time processing, and the results are sent
back to the Collator and also visualised in the web application.
This is a closed-loop of real-time data collection, analysis, and
feedback to the user. The first component of the system is the
sensors, and their specifications and design.

MANA Sensors
The MANA sensor unit (see Figure 2a) is a custom-built
printed circuit designed for recording human motion and mo-
bility. The board itself has gone through multiple iterations
over the years as can be seen in Figure 3. The earliest versions
of the board had minimal computational power, little on board
storage, and were relatively bulky. The first Arduino-based
units had fairly small memory footprints and required a sepa-
rate bluetooth module. Though we managed to squeeze one
simple gait algorithm onboard the early models [40], it was
clear that the RAM available was insufficient for the more so-
phisticated algorithms we had started to trial. We then moved
to the RFduino module which had much more RAM, program
space, and an integrated BLE stack. The Simblee is the next
generation of the RFduino, and provides the same function-
ality in a much smaller, single chip footprint. During this
development, we also moved from Bluetooth v2.0 to BLE
for its reduction in power consumption. Due to the need for
a smaller and more feature rich sensor, we significantly im-
proved the board in terms of both hardware specifications and
requirements for our users. The latest iteration of the board is
a single-sided 20.4mm x 24.1mm PCB, and includes:

• A Simblee IC, which has a 32-bit ARM Cortex M0 at
16MHz, with 24kB of RAM, and 128Kb of program/flash
memory.



Figure 3. Iteration of sensor hardware over time.

• A 6-axis Inertial Measurement Unit (MPU6050). Our unit
also supports a 9-axis MPU9150 (with added Magnetome-
ter).

• Support for a real-time location module, the DWM1000.
This module can be used for 2-way absolute range measure-
ments, although in this project it is not used.

• Bluetooth and USB connectivity.

• Low power mode for long term and untethered use.

• 256kB of EEPROM, the primary intended use for this is
storing processed (step) data, typically a week or two of
data.

• Battery, and battery management circuitry for measuring
and charging the attached 110mAh LiPo battery.

MANA sensors are programmable and give us full access to
the underlying hardware, allowing custom software to be run
directly on the sensor. We do not use a magnetometer as they
are easily susceptible to magnetic interference which can limit
the accuracy of orientation estimates [2]. However, this lack
of a magnetometer does not prevent us from estimating stride
and step length as is demonstrated in the results section of this
paper.

Each sensor draws up to 100mA when charging, and can be
recharged in about an hour, by plugging it in to a USB port. A
significant amount of effort was spent in ensuring that all com-
ponents used the least amount of energy, choosing low power
components throughout, and only powering components (such
as the USB chip) when they are needed. Our sensor software
makes use of all such energy saving features. The sensors have
been tested to see what sort of battery behaviour they have in
long-term use. The ultra low power standby mode (or shelf
life) lasts for about two months. Additionally, we tested the
battery life in a day-to-day use case of approximately one hour
of walking per day and found the devices lasted around two
weeks. We also tested the sensors in a test-bed, simulating
intensive laboratory use. During our experiment, we attached
units to around three test participants every hour, so we used
this as a guideline for our test-bed trial. Our test-bed moved
the units to simulate walking, and continuously streamed the
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Figure 4. Battery characteristic graph.

data via Bluetooth, for 10 minutes on, 10 minutes off, 8 hours
per day. The units last for 3-4 days between charges. The
battery characteristics of all three use cases can be seen in
Figure 4.

During data collection, the sensor samples the IMU at 100 Hz,
and streams the 3-axis accelerometer and 3-axis gyroscope
readings together with the sampling timestamp to the Colla-
tor. Transmitting raw sensor data to the Collator in real-time
is a challenge for the limited bandwidth of BLE, especially
when multiple sensors stream data simultaneously to the same
Collator. To maximise the use of the available bandwidth and
reduce power consumption, the sensors compress the IMU
data before transmission. The compression technique works
by sending the differences in adjacent IMU readings (and
adjacent timestamps) rather than the raw values, and thus it
requires much fewer bytes to represent the data. As per the
BLE specification, only 20 bytes can be sent within each time
slot, due to the limitation of GATT (Generic Attributes) char-
acteristics. To fully use the BLE bandwidth, multiple IMU
samples are combined into a data packet, and multiple data
packets are placed into a sending buffer to be sent together.
Exactly 20 bytes are taken from the sending buffer and sent
in each time slot, so that no bandwidth is wasted. Each data
packet contains a sequence number, so that packet loss can be
detected. As a result, the compression technique can reduce
the data size (and thus required bandwidth) by a factor of two
to three during walking data collection. We can stream from
five sensors simultaneously to the same Collator without data
loss using this compression technique, while data loss occurs
frequently if compression is not used.

Since the sensor’s hardware clock drifts over time, each sensor
will keep a different local time. In our system, every sensor
clock is synchronised to the Collator smartphone clock via a
simple synchronisation protocol [35]. Specifically, the Colla-
tor sends a “get-time" command to the sensor, and the sensor
immediately replies with its local time. The Collator also
records the time of the smartphone when the command is sent
and when the reply is received. This procedure is repeated
multiple times before and after data collection. With the re-
sultant timestamp dataset, we can use linear regression to find
the best alignment of the sensor time to the smartphone time



Figure 5. Iteration of sensor case over time.

(by calculating an offset and a scale factor of the sensor time).
The error bound of the synchronisation is approximately 10
ms, which is accurate enough to align the movement recorded
by different sensors (e.g., left and right steps).

In tandem with this sensor development, a custom plastic case
has been iterated on to encapsulate the sensor board together
with the battery, see Figure 5. Originally, our system used
ankle mounted sensors as these provided the best measure-
ments of stride and step length. However, in discussions with
clinicians and people with PD we realised that such a design
would draw attention to the user of the device, causing embar-
rassment and discouraging use. We therefore had to re-think
our original design and instead moved the sensor underneath
the arch of the foot as can be seen in Figure 2 b and c. This
simple change of location had many knock-on effects to our
system design. For one, the sensor case had to be strong
enough such that it was able to withstand the force of footfalls
whilst being embedded in the shoes during walking. To meet
this requirement we moved from fragile 3D printed cases to a
durable plastic machined case. We also based the dimensions
of the case on the dimensions of the 6th generation iPod Nano,
allowing us to use any of the mounts and cases designed for
this product. Furthermore, algorithms designed around the
original location had to be redesigned to take into account the
physics of the new position of the sensor.

For the needs of our system, our sensors have many benefits
over other commercial products. They are inexpensive even
before mass production (less than USD $100), they permit
us to use wireless transmission, and they are completely pro-
grammable. This last feature is critical as in future work we
intend to develop more sophisticated onboard algorithms for
gait evaluation and detection.

MANA Collator and Hub
The Collator is a mobile application that can run on any smart-
phone that supports BLE. It collects the data from sensors over
BLE and then uploads the data to the Hub. It is currently im-
plemented on the Android platform and has been tested on the

most common Android phones (such as the Samsung Galaxy
S series). During normal operation, the application runs in
the background collecting data from the sensors, and if it has
access to the internet it will securely transfer the recorded data
to the Hub.

The Hub is a web based application for storing, processing
and viewing the data recorded by the MANA sensors. It has
an accounts and permission system to only allow a user’s data
to be seen by those with appropriate authorisation (such as the
user himself/herself or the doctor of that user). Additionally,
there is an anonymiser system to generalise data for research
purposes. The system supports both historical (or archived)
data for later analysis and live streaming for real-time data
acquisition and processing. The Hub can compute the gait
parameters (e.g., stride time and stride length) immediately
after each stride, and stream them back to the Collator in
real-time. A set of communication protocols are defined and
implemented between the Sensor, Collator and the Hub, so
that the user can easily control the sensors from both Collator
and the Hub.

By connecting the wireless MANA sensors to smartphones
and cloud services, MANA becomes an all-in-one system with
access to both real-time motion tracking and almost unlimited
computing power, allowing sophisticated temporal and spatial
gait analysis to be performed. MANA was designed with
people with PD in mind, specifically to reduce the stigma of
using any assistive technology. With this system built, we ran
a clinical data collection experiment to validate our system
and algorithms.

DATA COLLECTION EXPERIMENT
To test our new system, algorithms, technology and applica-
tions, we designed and performed a clinical experiment at
Huashan Hospital, Fudan University in Shanghai, China.

Experiment Protocol
The intention of this experiment was to test our system across
a large and diverse set of participants with varying degrees of
gait disability. We recruited forty people with PD, ten partic-
ipants for each severity group and ten people with rapid eye
movement sleep behaviour disorder, a prodromal condition
for PD. Additionally, ten age and sex matched healthy partici-
pants were recruited from the public. In total there were sixty
participants. Participants could be included if they met the
following criteria:

• Between 50-75 years old.

• Capable of reading, understanding, and signing the in-
formed consent (no cognitive impairment).

• No serious diseases or conditions which would effect their
ability to perform the tasks required.

• No gait disabilities or symptoms caused by other disorders
which could affect analysis.

All testing procedures were approved by the Institutional Re-
view Board (IRB) at Huashan Hospital, and all participants
signed consent forms. All participants were recruited from the



Figure 6. Sensor locations on the body, and the transformation between
IMU and Global reference frames.

Parkinson’s Database Study of Huashan Hospital. Participants
were required to be in a medication deplete state to fully show
their symptoms during the trial.

Participants were evaluated by neurologists on the day of
the test to give an evaluation of their disease stage. Data
on severity of gait disability, as well as other important data
such as height, weight, age and so forth were collected on
each participant. All of the experiment was filmed to serve as
ground truth and also for blind testers to evaluate the status
of each participant. Each participant was equipped with five
sensors, though here we only use the following three, two
embedded in the shoes, and one on the waist (see Figure 6a),
which recorded accelerometer and gyroscope data at 100 Hz.
We tested our system against ground truth measurements of
stride length and step length. We obtained our ground truth
measurement for stride length by using a computer vision
based system similar to that in [42].

Test Procedure
The test procedure involved walking on an eight metre walking
track. Participants were required to walk unassisted approx-
imately 8-10 times around this walking track continuously
to give a minimum of around 30 strides of each foot. The
walking track has two turns, one at the beginning and one
at the end. Participants could stop at any time if they were
unable to continue. In the next section, we will discuss the
algorithms used to calculate gait parameters from this recorded
accelerometer and gyroscope data.

ALGORITHMS AND ANALYSIS
One of the key functionalities of MANA is gait analysis. The
first step of analysis involves segmenting each stride from the
IMU data, and identifying each stage in a gait cycle. After
that we can calculate the temporal gait parameters (e.g., step
and stride time) and spatial gait parameters (e.g., step and
stride length). This section describes the IMU data processing
pipeline for temporal and then spatial gait analysis.

Data Preprocessing
Before the accelerometer and gyroscope data can be analysed
by our algorithms it must first be calibrated, then converted to
a consistent reference frame. After that, the data is separated
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into straight line walking segments, and into non-walking
segments.

Accelerometer and Gyroscope Calibration
Each axis i of an accelerometer or gyroscope has a bias bi and
scale factor fi, which are required to adjust the raw sensor
measurement V raw

i to the calibrated value V calib
i for further

processing:

V calib
i = fi(V raw

i −bi).

For the inertial sensors such as the ones used in our system, the
sensor parameters bi and fi are different for different sensors,
and also vary under different temperatures. Thus we conduct
a one-time lab calibration to obtain the baseline parameters
for each sensor, and use these parameters to adjust the raw
sensor measurements. Since in each data collection session,
the actual sensor parameters may vary slightly, we introduce
bi and fi as variables in one of our sensor models and fine-tune
them in each session.

To perform this one-time lab calibration of each axis of the
accelerometer and gyroscope, we built a calibration platform
which can be programmed to rotate in two degrees of freedom
(DoF). Then we affix the sensor board on the platform, and use
the sensor readings when the platform is stationary or rotating
to calibrate each axis of the accelerometer and gyroscope [40].

IMU Coordinate System
The next step is to change the IMU coordinate system to one
that is more intuitive and straightforward. Each shoe sensor



is embedded in the shoe such that the three IMU axes are
approximately parallel with the forward, leftward and upward
directions of the participant, respectively. The sensor body
frame constructed by the three IMU axes is denoted by {B}.
For simplicity and convenience, from the participant’s perspec-
tive, we define the three IMU axes as anterior-posterior (AP)
axis (anterior as positive direction), left-right (LR) axis (left-
ward as positive direction), and up-down (UD) axis (upward as
positive direction), which are denoted by

#  –
APB,

#  –
LRB and

#   –
UDB,

respectively (Figure 6b). These three axes form a right-handed
Cartesian coordinate system. Thus the 3-axis acceleration can
be denoted by aAP, aLR and aUD, respectively. Similarly, the
3-axis rotation rates measured by gyroscope are denoted by
ωAP, ωLR and ωUD, respectively. Example accelerometer and
gyroscope waveforms are shown in Figure 7.

Since the time interval between successive IMU samples varies
slightly (even though the IMU is configured to sample at a
constant rate), the raw IMU data is usually interpolated and
resampled at a higher fixed frequency [14, 21]. In our study,
all IMU data was cubic-spline interpolated and resampled at
1000 Hz, and then low-pass filtered at a cut-off frequency of
10 Hz, as is common in most studies [43, 44].

Straight Line Walking Segmentation
We focus only on the analysis of gait data during straight-line
walking. Therefore, a program was developed to separate
straight-line walking segments from non-walking segments
such as stationary or turning segments. This separation was
achieved primarily based on manually selected thresholds of
the acceleration amplitude (to remove non-walking segments)
and rotation rate (to identify turning). Since the patterns of
different walking segments are relatively prominent and clear
in the walking dataset collected in this study, this straight-
line walking segmentation program achieved close to 100%
accuracy.

Gait Cycle Analysis
Temporal gait analysis involves the segmentation of each in-
dividual stride (known as a gait cycle) from the IMU data.
Figure 9 illustrates different phases in a full gait cycle, such as
swing/stance phases and single/double support phases. These
gait phases are separated by Toe-Off (TO) and Heel-Strike
(HS) events. The step time is the duration between two suc-
cessive HS of the two feet, while the stride time is between
two successive HS of the same foot. The stance phase of one
foot is from its HS to its TO. The swing phase of one foot is
from its TO to its HS, which corresponds to the single-support
phase of the other foot. The double-support phase is between
the HS of one foot and the TO of the other foot. The duration
of each phase in the gait cycle can be directly obtained from
the TO and HS times of both feet.

As shown in Figure 8, each TO and HS event in a stride causes
a predominant peak and trough in the aAP waveform. The peak
and trough points can be located using a simple peak detection
algorithm. To find stable and reliable correspondence points
of the TO and HS events in the aAP waveform, we use the
sharpest rising point (i.e., with the largest difference between
this point and its preceding point) in the rising edge preceding

the peak point as the correspondence point of a TO event, and
use the sharpest rising point in the rising edge after the trough
point as the correspondence point of a HS event.

Whilst a single sensor attached to the waist at the navel posi-
tion can also be used by itself to detect steps and strides and
even identify left vs. right steps [41, 9], it is usually not as
straightforward and accurate as detection based on two foot-
attached sensors. This is an advantage of our sensor system
which allows the whole gait cycle to be clearly defined. This
complete gait cycle analysis cannot be achieved by a single
sensor on one foot or on the waist. For example, one sen-
sor can not detect strides of the opposite foot or step length.
Moreover, double-support time and single-support time of the
opposite foot can not be inferred from one sensor.

After gait cycle analysis, statistics of an entire walking ses-
sion can be calculated, such as step count, cadence (steps per
minute), variation of step time, and swing/stance time ratio.
The comparison of these parameters between two feet (e.g.,
left/right step time ratio) can also be performed. To clinicians,
these results of the temporal analysis provide insights into the
gait dynamics and walking style of the participant and sub-
sequently to the participant’s health condition. For instance,
some people with PD are more impaired on one side of the
body than the other, and as such they tend to have imbalanced
gait, which is usually reflected as a large difference between
some or all gait parameters of two feet.

Stride Length Calculation
Now that the gait cycle of each stride is clearly defined, we can
calculate stride length, which is an important and fundamental
spatial gait parameter. The position of the IMU affects the
accuracy of stride length estimation [27]. Due to our users
requirements we embed the sensor in the bottom of a shoe, and
this enforced several kinematic constraints that can be used in
our algorithms. The following subsections describe two stride
length algorithms based on double integration and kinematic
constraints, which use the data from a single shoe-embedded
sensor.

The stride length is the distance between two stance positions
of the same foot. As the foot sensor is embedded in the
shoe, the sensor stays stationary during the stance phase of
the gait cycle, and therefore all axes of IMU data do not vary
much. This is clearly shown in Figure 8 as the segment of
the waveform which is flat and approximately zero for both
accelerometer and gyroscope. Thus, we define the middle time
point of the stance phase as the “zero point”, because at “zero
point” the gravity-removed acceleration, velocity and rotation
rate of the IMU can all be assumed to be zero. This definition
is consistent with the “zero velocity assumption” [12] and
the Zero Velocity Update method (ZUPT) at mid-stance that
are widely adopted by many studies for foot-mounted IMU
analysis. Unlike our study, the IMU in those studies is attached
to the back of the heel or the ankle position, causing the IMU
to slowly rotate during stance. In general, the higher the sensor
is attached on the foot, the faster the sensor rotates at stance.
Research has shown that multiple significant modelling errors
are related to the ZUPT methods [27]. By contrast, our shoe-
embedded IMU has almost constant readings at “zero point”,



Figure 9. The gait cycle.

which results in smaller errors and justifies the use of the “zero
velocity assumption”.

Transformation Between Coordinate Systems
As stride length is measured in the global reference frame
(denoted by {G }), we must transform the IMU acceleration
from the sensor body frame to the global frame. Assuming
straight-line walking on level ground, a global coordinate
system {G } can be established with its AP axis (

#  –
APG) pointing

forwards along the walking line, its LR axis (
#  –
LRG) pointing

leftwards of the participant, and UD axis (
#   –
UDG) pointing

upwards (parallel with gravity direction). During straight-line
walking, the global coordinate system {G } is fixed, while
the sensor body frame {B} rotates along with the shoe. The
acceleration recorded by the IMU is represented in {B}, while
the spatial gait parameters such as stride length are represented
in {G }. Thus the first step is to transform the acceleration into
{G }. Let R be the transformation matrix from {B} to {G },
thus the acceleration vector aB = [aAP,aLR,aUD]

T measured
by IMU in {B} can be transformed to acceleration in {G } as
aG = RaB. Double-integrating aG gives the distances traveled
in the global frame, such as stride length.

During walking, R changes in time, and is denoted by R(t) at
time t. Time t starts from 0 (at the beginning of the stride) and
ends at T (at the end of the stride). First, we need to determine
R(0), i.e., the rotation of the shoe at the start of a stride.

Since the IMU is assumed to be stationary in the beginning of
a stride, the acceleration measured by IMU is purely accelera-
tion due to gravity. We introduce a parameter θ as the angle
between the direction of movement in the global frame and the
AP axis, as shown in Figure 6b. Usually θ is relatively small
as the IMU is embedded in the shoe such that they are almost
co-directional. The parameter θ will be determined differently
later in the two algorithms described in the next subsections.

After R(0) is obtained, and given the IMU rotation rate ω(t) =
[ωAP(t),ωLR(t),ωUD(t)] measured by the gyroscope at time t,
R(t) can be updated iteratively by

R(t +dt) = R(t)

[ 1 −ωUD(t)dt ωLR(t)dt
ωUD(t)dt 1 −ωAP(t)dt
−ωLR(t)dt ωAP(t)dt 1

]
,

where dt is a small time interval between two IMU sam-
ples [17, 32].

Note that this equation integrates ω(t) over time, which may
cause an accumulated estimation error of R(t) due to the noise
in ω(t) and the errors of numerical integration. This is the
main source of error in this stride length estimation approach
and the next subsections will describe the general idea of dif-
ferent methods to compensate for it, a more in-depth overview
can be found in [39].

Reset-based Stride Length Algorithm (SL-Reset)
The key idea of the Reset-based Stride Length Algorithm is
to linearly reset the gravity-removed acceleration and velocity
to zero at the end of each stride, which is a zero point. As
mentioned before, R(t) usually drifts over time, which can
cause increasing estimation errors. At the stride ending time
t = T , the acceleration in the global frame may be far from
zero, even though based on the zero point assumption, it should
be close to zero. To mitigate this drift problem, the following
linear resetting function h0(·) is applied to the acceleration to
force it to be zero at t = T :

h0(x(t)) = x(t)− t
T

x(T ),

where x(t) is a time series with t between 0 and T .

Optimisation-based Stride Length Algorithm (SL-Opt)
The Optimisation-based Stride Length Algorithm utilises a
sensor fusion model with parameters and then optimises these
parameters based on kinematic constraints. As mentioned,
the sensor bias and scale factor may change under different
environments, or even after each switch-on. To account for
these variable sensor properties, we first process the sensor
data using the following models. The acceleration model used
in this method is given by

ai = (1+ f Acc
i )(ãi−bAcc

i ),

where i is one of the AP, LR or UD axes, ãi is the IMU-
measured acceleration after preprocessing, bAcc

i is the bias,
and f Acc

i is the adjustment of the scale factor. Similarly the
model for rotation rate ωi is

ωi = (1+ f Gyro
i )(ω̃i−bGyro

i ).



The 12 model parameters Ω = {bAcc
i , f Acc

i ,bGyro
i , f Gyro

i }i will
be estimated later using least-squares optimisation (such as
using the Levenberg–Marquardt algorithm [25]). Finally, after
the model parameters Ω and θ are determined, the stride length
is calculated.

Linear Correction of SL-Reset and SL-Opt
In the previous two approaches, we found that the derived
stride lengths had a mean error of approximately 2-4 cm, in-
stead of zero (see the results in Table 1). The underestimation
of stride length is likely caused by several reasons. For exam-
ple, since the IMU data is low-pass filtered in the preprocessing
step in order to remove noise, the amplitude of the resultant
data is inevitably reduced to some extent, which leads to a
reduction in stride length estimation. Another source of this
underestimation is that in reality the velocity at zero points
may be slightly larger than zero for some strides, thus resetting
the velocity to zero can cause an underestimated stride length.

In order to compensate for this underestimation, we fit a model
to map the initial stride length estimation (L′) to the ground-
truth stride length (L). Since this is a simple mapping between
two scalar variables, we used a regression model. Specifi-
cally, different degrees of polynomial regression models were
trained and evaluated, and we selected simple linear regression
(i.e., L = αL′+β ) for its accuracy and parsimony, where the
coefficients α and β are determined using least squares fitting.

Machine Learning Regression for Stride Length (SL-ML)
Another approach is to use machine learning methods to esti-
mate stride length. For each stride, we extracted features from
the IMU waveforms of both foot sensors. For the three accel-
eration waveforms (and similarly for the three rotation rate
waveforms), the first and second integral of each waveform
as well as the energy waveform (i.e., the Euclidean norm) are
used. Approximately 5000 features are extracted from each
waveform, and are similar to those in existing studies [41],
such as the min, max, mean and standard deviation of each
waveform.

We used Multi-layer Perceptrons (MLP) to build our regression
models in this study, due to their flexible configuration and
modelling capability, as well as their wide application (with
validated performance) in gait analysis (e.g., [37, 41]). We use
the scikit-learn library [30] to train the regression model.
Our process involves

1. Feature standardisation by centering and scaling the features
to zero mean and unit variance.

2. Feature dimensionality reduction using Principal Compo-
nent Analysis (PCA).

3. Training and evaluation of the regression model.

We split the data into 80% for training and validation sets,
with the remaining 20% as a test set. The sets are split such
that the ratio of steps of each participant is the same in all sets.
We performed five-fold cross-validation using the training and
validation sets to tune the MLP hyper-parameters. The final

Table 1. Measurement errors of our three stride length estimation algo-
rithms and comparison to other studies

Error: cm (% error)
Algorithm Condition Mean MAE
SL-Reset Initial -3.78 (-3.09) 6.9 (5.71)

Corrected 0.03 (0.02) 6.72 (5.68)
SL-Opt Initial -2.16 (1.8) 5.78 (4.8)

Corrected 0.02 (0.02) 5.72 (4.71)
SL-ML -0.63 (0.27) 4.04 (4.24)
Bamberg et al. [3] - 8.50 (-)
Sijobert et al. [36] - 9.00 (5.60) PD

- 10.20 (11.2) HS

model performance is evaluated on the test set. Our best hyper-
parameters were found to be 40-100 PCA components, and a
single hidden layer of size 800.

Machine Learning Regression for Step Length (StepL-ML)
Step lengths (as distinct from stride lengths) are another impor-
tant spatial gait parameter for clinicians to evaluate gait [23,
18]. As described in the previous subsections stride length can
be calculated analytically based on the zero point constraints
using a shoe-embedded sensor. However, it is not as straight-
forward to calculate the step length between alternating feet
purely based on two shoe-embedded sensors, since one sensor
can only measure the movement of the foot that it is mounted
on and it is difficult to align the two sensor positions spatially.

In the MANA system, the waist-mounted sensor can be used
to measure step length since the waist sensor captures the
movement of both feet. The previous stride length methods
rely on the assumption that the IMU is stationary at the middle
of stance and thus it is not suitable for step length calculation
using the waist sensor, because the waist sensor keeps moving
forward even during the foot stance phase.

To calculate step length based on the waist sensor, machine
learning-based regression methods can be used, which have
been adopted by many studies for IMU-based displacement
measures, including step and stride length [41]. We repeated
the same procedure using an MLP as in the previous subsec-
tion, but this time using the waist sensor data in addition to the
foot sensor data. Our best hyper-parameters were found to be
100 PCA components, and a single hidden layer of size 700.

RESULTS
A stride length dataset of 5141 strides from both feet was
combined across 60 participants, with a minimum of 30 strides
for each participant. Since the participants vary from healthy
participants to participants with severe PD, the stride length
dataset has a large range from 29 cm to 159 cm. The mean
and standard deviation of the stride lengths are 102 cm and 24
cm, respectively.

Three stride length algorithms (SL-Reset, SL-Opt, and SL-
ML) were tested on this dataset and compared to ground truth
measurements. Different metrics have been used in the litera-
ture to quantify the measurement errors, and here we report the
mean error, and mean absolute error (MAE) measured in cm
for each algorithm, as shown in Table 1. Furthermore, since



Table 2. Measurement error of step length estimation algorithm and
comparison to other studies

Error: cm (% error)
Algorithm Mean MAE
StepL-ML -0.01 (0.76) 2.63 (5.86)
Sayeed et al. [34] - 3.30 (-)
Zhu et al. [41] - RMSE: 3.22 (6.95)

Table 3. Breakdown of measurement error of stride and step length esti-
mation algorithms by severity group

Group Error MAE: cm (% error)
Algorithm Healthy Mild Severe
SL-ML 4.08 (3.24) 3.80 (3.62) 4.23 (5.45)
StepL-ML 2.66 (4.32) 2.14 (4.04) 3.05 (8.40)

the stride length varies across a large range, we also calculated
the normalised percentage error, which is the estimation error
divided by the ground-truth stride length and multiplied by
100. Each row in the table represents a different condition of
the algorithm, where “Initial” means the original estimation
of stride length without applying the linear regression method,
and “Corrected” means that linear regression was applied.

As can be seen in Table 1, these errors of the proposed algo-
rithms are dramatically smaller than other IMU-based studies
that are tested on people with PD. It is worth noting that our
study involves a large group of participants with a wide range
of gait styles and stride lengths. By applying linear regression,
the mean error of all algorithms is reduced to almost zero. A
mean error of about zero indicates an accurate algorithm for
estimating the total walking distance (such as in pedestrian
tracking), and outperforms existing studies. However, SL-ML
is the best performing and has the smallest mean absolute error
of approximately 4.0 cm (or 4.3%).

A step length dataset of 4857 steps was combined across
the 60 participants. The size of the step length dataset is
slightly smaller than the stride length dataset because each
step requires the existence of two strides of both feet. The step
length dataset ranges from 12 cm to 82 cm, with a mean of
51 cm and standard deviation 12 cm. The results of our step
length algorithm accuracy can be seen in Table 2. As can be
seen in the same table, by incorporating the information from
the foot sensor and waist sensor, StepL-ML has an accuracy
that is comparable to (or better than) other studies of the same
type. Whilst a direct comparison can not be made with Zhu et
al. [41], the RMSE error is of the same order as our study.

We also looked at the performance of our system as a function
of PD severity. We split our 60 subjects into three groups
of increasing severity, those without PD, those with PD in
stages 1 and 2, and finally those with PD in stages 3 and
4. We then evaluated our best performing stride length and
step length algorithms on these groups. As can be seen in
Table 3, the accuracy of the system is slightly lower in the
more severe cases. This is expected as in late stages of the
disease, walking patterns can become more erratic. Despite
this, it still outperforms the other studies in Table 1 and 2.

In summary, by measuring stride and step length for both
feet, MANA can provide comprehensive insights into spatial

gait dynamics, as well as the statistics (e.g., variation) and
comparison between two feet, which is a fundamental part of
gait and mobility analysis.

FUTURE WORK AND CONCLUSIONS
In this paper we demonstrated an all-in-one system for mo-
bility analysis, including a body sensor network (two sensors
embedded in the shoes, and one on the waist) and a data
analysis and visualisation backend. We introduced novel and
accurate gait analysis algorithms by fusing accelerometer and
gyroscope data and using imposed kinematic constraints. We
also use machine learning techniques to calculate stride and
step metrics accurately. Additionally, we performed a clinical
trial with 60 participants, 40 people with PD, 10 people with
rapid eye movement sleep behaviour disorder, and 10 healthy
people to validate our system and algorithms.

By taking into account our users’ requirements, and putting
the user center in our development, we were able to find new
and innovative methods to estimate gait metrics. For example,
embedding the sensor in the shoe enabled the development
of novel algorithms for gait length estimation. This is an im-
portant differentiating characteristic of our system in contrast
to most commercial systems which use ankle mounted sen-
sors. This new location is shown to be an advantage for some
stride length estimation algorithms (specifically for justifying
zero point assumptions). Furthermore, the unobtrusiveness of
the sensor location and the long battery life makes long term
monitoring using MANA a strong possibility.

The flexibility, portability, and scalability of MANA enables
a wide range of applications and use cases with high social
impact. Firstly, MANA provides people with PD with afford-
able access to gait analysis technology normally only available
at large hospitals. Systems such as the GAITRite cost many
tens of thousands of dollars, whereas each of our sensors cost
less than USD $100. MANA can be used at home as it is a
convenient and invisible wearable system designed to limit the
stigma associated with assistive technologies. It makes it possi-
ble for someone to track their motor performance over a much
longer time period, providing more accurate and fine-grain
information. Our system also allows for up to five sensors
recording data at one time, meaning sensors could be placed
on other extremities to record other human motion.

MANA is not only restricted to monitoring people with PD; it
can also be used for evaluation of those with mobility impair-
ment in general. MANA lays out the technical foundation for
higher level applications to be developed and deployed. For
example, MANA could detect other parkinsonian symptoms
such as freezing of gait and perhaps provide audio or visual
cues to help a user resume walking. In conclusion, MANA
represents a promising platform for accessible and affordable
clinical mobility analysis with a wide range of potential appli-
cations.
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