



# A Ranking Model Motivated by NMF with Applications to Tennis Tournaments

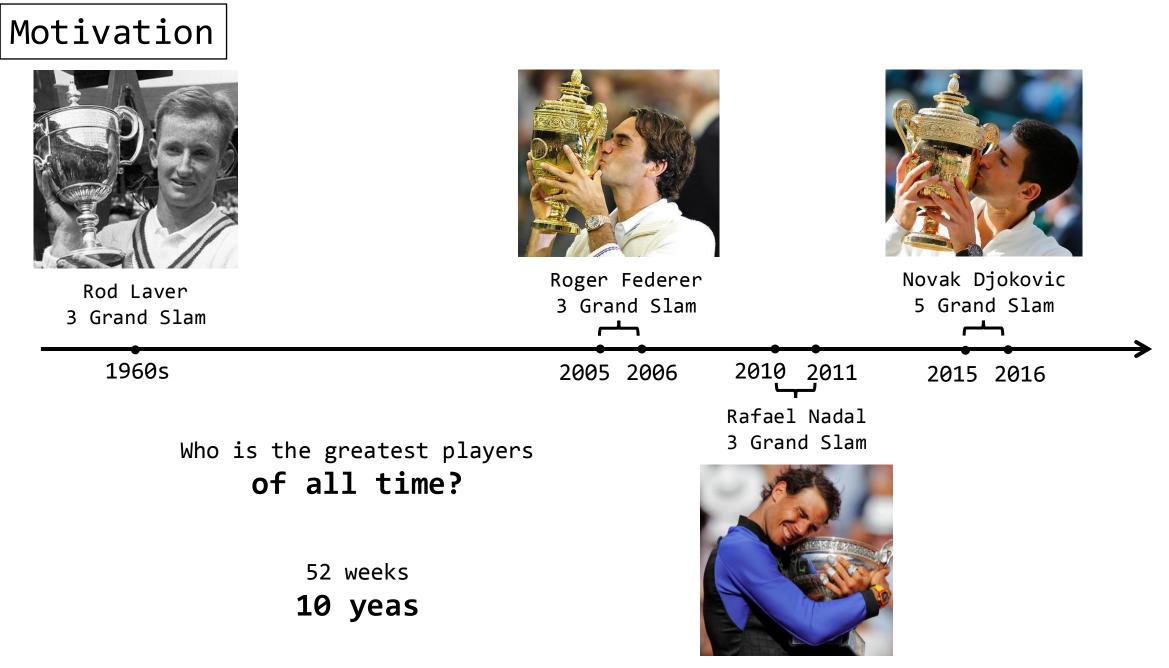
## Vincent Tan National University of Singapore

LRMA 2019 Mons, Belgium 13 Sept 2019



Rui Xia NUS, Maths

Louis Filstroff IRIT, Toulouse Cédric Févotte IRIT, Toulouse



### Latent Variables: Surface Type?



Wimbledon Grass Outdoors



French Open Clay Outdoors



Australian Open Hard Outdoors



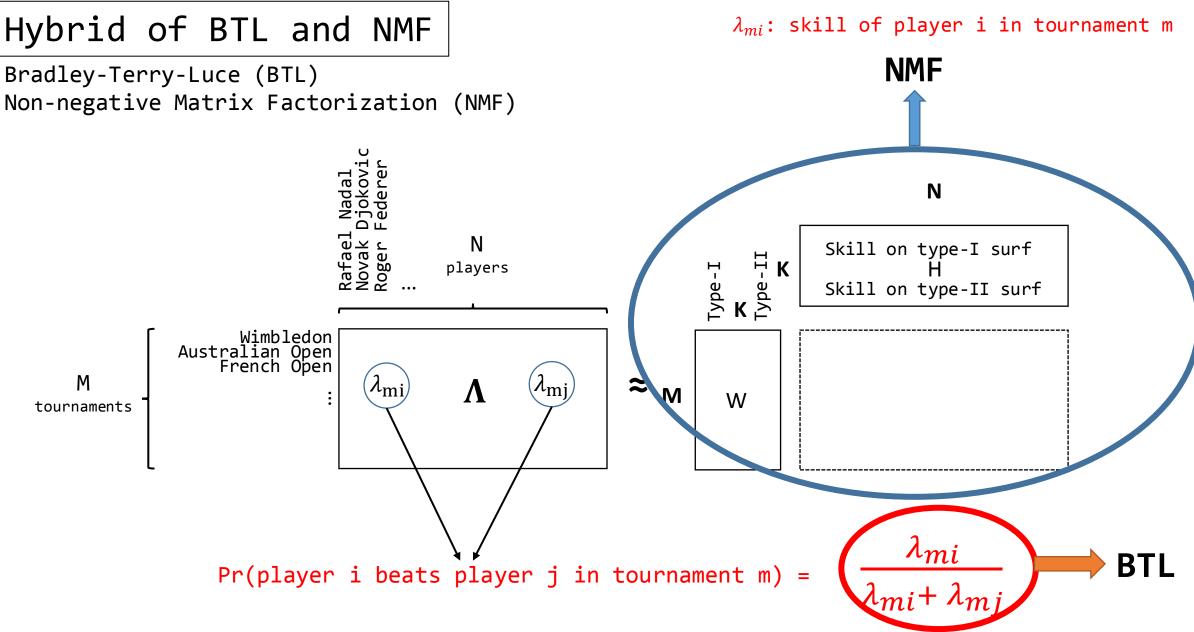
US Open Hard Outdoors

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

#### 2. Experiments Using Real Life Dataset

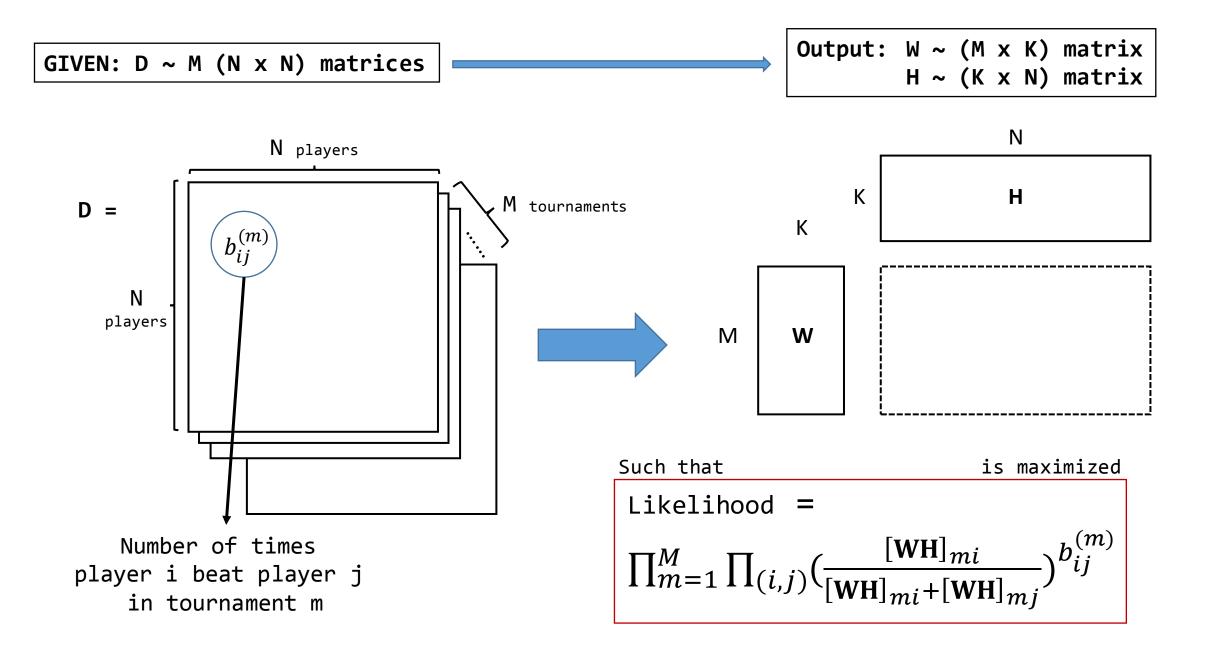
- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison





R. Bradley and M. Terry. Rank analysis of incomplete block designs I: The method of paired comparisons. Biometrika, 35:324--345, 1952. R. Luce. Individual choice behavior: A theoretical analysis. Wiley, 1959.

D. D. Lee and H. S. Seung. Learning the parts of objects with nonnegative matrix factorization. Nature, 401:788-791, 1999.



#### Task: Minimize the negative log-likelihood

Find 
$$\begin{aligned} & \operatorname{argmin}_{W,H \ge 0} \left( -\log P(\mathbf{W}, \mathbf{H} | \mathcal{D}) \right) \\ & = \operatorname{argmin}_{W,H \ge 0} \left( \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \left[ -\log \left( [\mathbf{W}\mathbf{H}]_{mi} \right) + \log \left( [\mathbf{W}\mathbf{H}]_{mi} + [\mathbf{W}\mathbf{H}]_{mj} \right) \right] \right) \end{aligned}$$

Convex? No!

Objective function not guaranteed to decrease using standard gradient-based algorithms

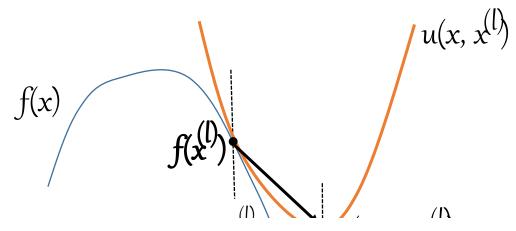
- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

#### 2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



Majorization-Minimization algorithm



1. u(x, x) = f(x) for all  $x \in \mathcal{X}$ ; 2.  $u(x, x^{(l)}) \ge f(x)$  for all  $(x, x^{(l)}) \in \mathcal{X}^2$ .

9

3.  $u'(x, x^{(l)}; d)|_{x=x^{(l)}} = f'(x^{(l)}; d)$  for all d such that  $x^{(l)} + d \in \mathcal{X}$ , where

$$u'(x, x^{(l)}; d) = \frac{\partial}{\partial x} u(x, x^{(l)}; d), \text{ and } f'(x; d) = \frac{\partial}{\partial x} f(x; d)$$

4.  $u(x, x^{(l)})$  is (jointly) continuous in  $(x, x^{(l)})$ .  $x^{(l+1)} = x_{min}$   $x^{(l)} \xrightarrow{l \to \infty}$  Stationary point of f(x)

#### min $f(\mathbf{W}, \mathbf{H}|\mathcal{D})$

$$\mathbf{W}^{(l+1)} \longleftarrow u_1(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)})$$
$$\mathbf{H}^{(l+1)} \longleftarrow u_2(\mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)})$$

$$\sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[ -\log\left( [\mathbf{WH}]_{mi} \right) + \log\left( [\mathbf{WH}]_{mi} + [\mathbf{WH}]_{mj} \right) \right]$$
$$- \sum_{(i,j)} b_{ij} \left[ \log \theta_{i} - \log\left( \theta_{i} + \theta_{j} \right) \right]$$
By Taylor's Theorem  $\longrightarrow \log y \leq \log x + \frac{1}{x}(y - x).$ 
$$u(\theta, \theta^{(l)}) = -\sum_{i,j} b_{ij} \left[ \log \theta_{i} - \log(\theta_{i}^{(l)} + \theta_{j}^{(l)}) - \frac{\theta_{i} + \theta_{j}}{\theta_{i}^{(l)} + \theta_{j}^{(l)}} + 1 \right] \longrightarrow \theta_{i}^{(l+1)} \leftarrow \frac{\sum_{j \neq i} b_{ij}}{\sum_{j \neq i} (b_{ij} + b_{ji})/(\theta_{i}^{(l)} + \theta_{j}^{(l)})}$$

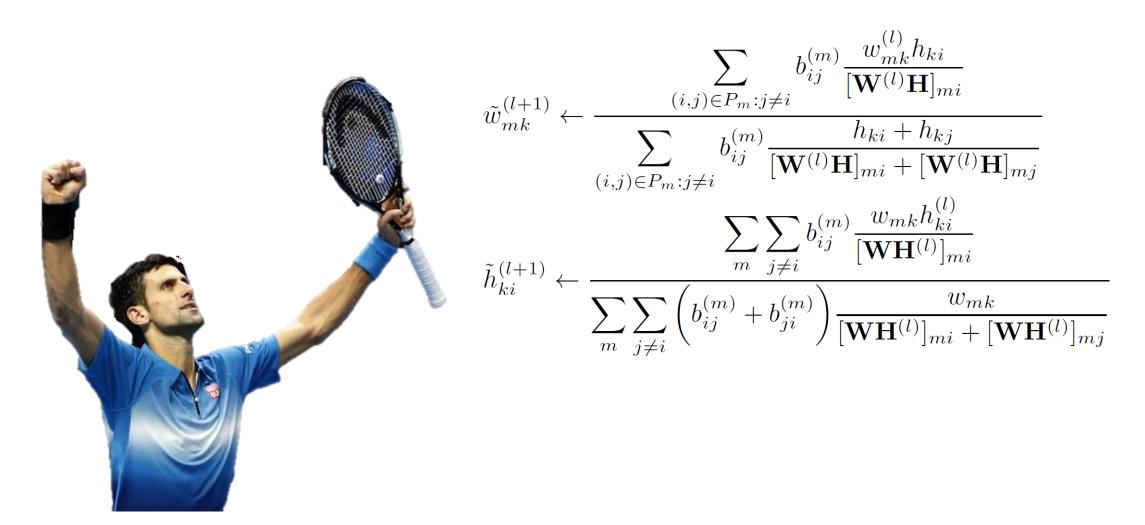
$$\begin{split} \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[ -\log\left( [\mathbf{W}\mathbf{H}]_{mi} \right) + \log\left( [\mathbf{W}\mathbf{H}]_{mi} + [\mathbf{W}\mathbf{H}]_{mj} \right) \right] \\ & \clubsuit \\ \widetilde{u}_{1} \left( \mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)} \right) = \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[ -\log\left( [\mathbf{W}\mathbf{H}]_{mi} \right) \\ & + \log\left( [\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mj} \right) + \frac{[\mathbf{W}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}\mathbf{H}^{(l)}]_{mj}}{[\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mj}} - 1 \right] \\ & \mathsf{By Jensen's Inequality} \\ & - \log[\sum_{k} w_{mk}h_{ki}] = -\log\left[\sum_{k} \lambda_{mki} \frac{w_{mk}h_{ki}}{\lambda_{mki}}\right] \leq -\sum_{k} \lambda_{mki} \log\left[\frac{w_{mk}h_{ki}}{\lambda_{mki}}\right] = -\sum_{k} \frac{w_{mk}^{(l)}h_{ki}}{[\mathbf{W}^{(l)}\mathbf{H}]_{mi}} \log\left[\frac{w_{mk}h_{ki}}{w_{mk}^{(l)}h_{ki}} [\mathbf{W}^{(l)}\mathbf{H}]_{mi}\right] \\ & - \left(\mathsf{I}\mathbb{E}(X)\right) \leqslant \mathbb{E}(f(X)) \end{split}$$

$$\begin{split} u_{2}(\mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)}) \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \bigg[ -\sum_{k} \frac{w_{mk}^{(l+1)} h_{ki}^{(l)}}{[\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi}} \log \bigg( \frac{h_{ki}}{h_{ki}^{(l)}} [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} \bigg) \\ &+ \log \bigg( [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mj} \bigg) \\ &+ \frac{[\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mj}}{[\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mj}} - 1 \bigg] \end{split}$$

$$\begin{split} u_{1}(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[ -\sum_{k} \frac{w_{mk}^{(l)} h_{ki}^{(l)}}{[\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi}} \log \left( \frac{w_{mk}}{w_{mk}^{(l)}} [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi} \right) \\ &+ \log \left( [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mj} \right) + \frac{[\mathbf{W} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W} \mathbf{H}^{(l)}]_{mj}}{[\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mj}} - 1 \right] \end{split}$$

Auxiliary Functions

#### Updates for MM algorithm



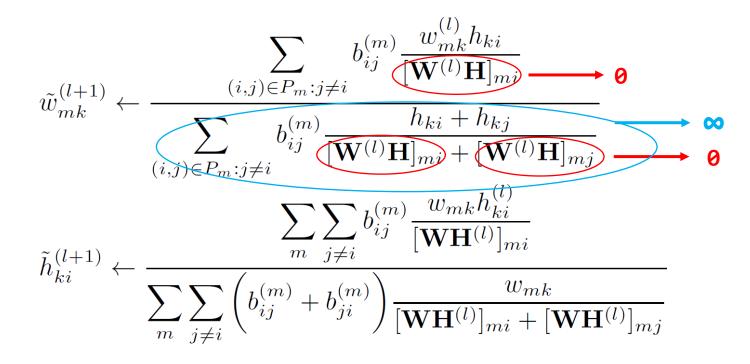
- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

#### 2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



#### May Divide by 0 or small numbers



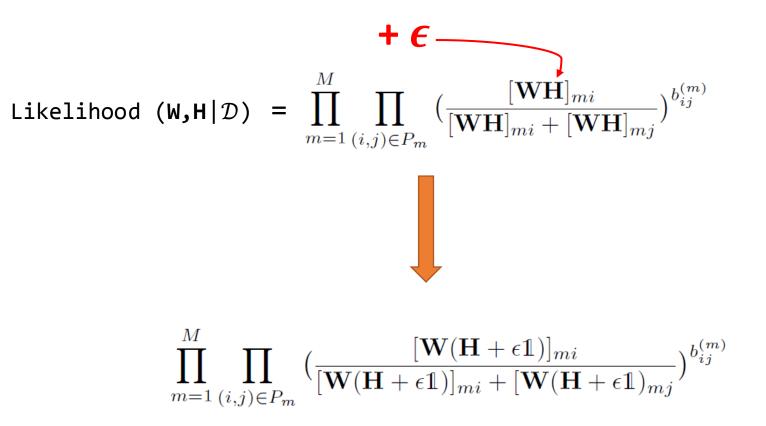
#### Desired Properties

Property 1: Likelihood is always non-decreasing (Objective Function should be non-increasing)

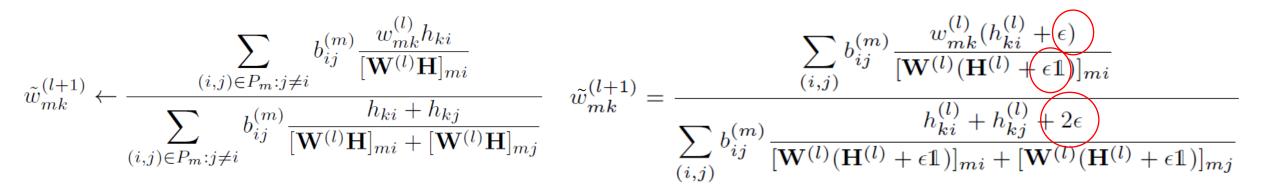
Property 2: W,H are non-negative

Property 3: No division by zero/Numerical problems

#### Proposed Solution



$$\int_{m=1}^{M} \sum_{(i,j)\in P_m} b_{ij}^{(m)} \left[ -\log(\sum_k w_{mk}h_{ki}) + \log(\sum_k w_{mk}h_{ki}) + \sum_k w_{mk}h_{kj}) \right]$$
$$f_{\epsilon}(\mathbf{W}, \mathbf{H}) := \sum_{m=1}^{M} \sum_{(i,j)\in P_m} b_{ij}^{(m)} \left[ -\log(\sum_k w_{mk}(h_{ki} + \epsilon)) + \log(\sum_k w_{mk}(h_{ki} + \epsilon)) + \sum_k w_{mk}(h_{kj} + \epsilon)) \right]$$



$$\tilde{h}_{ki}^{(l+1)} \leftarrow \frac{\sum_{m} \sum_{j \neq i} b_{ij}^{(m)} \frac{w_{mk} h_{ki}^{(l)}}{[\mathbf{W}\mathbf{H}^{(l)}]_{mi}}}{\sum_{m} \sum_{j \neq i} \left( b_{ij}^{(m)} + b_{ji}^{(m)} \right) \frac{w_{mk}}{[\mathbf{W}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}\mathbf{H}^{(l)}]_{mj}}}$$

$$\tilde{h}_{ki}^{(l+1)} = \frac{\sum_{m} \sum_{j \neq i} b_{ij}^{(m)} \frac{w_{mk}^{(l+1)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l+1)} (\mathbf{H}^{(l)} + \epsilon\mathbf{1})]_{mi}}}{\sum_{m} \sum_{j \neq i} (b_{ij}^{(m)} + b_{ji}^{(m)}) \frac{w_{mk}^{(l+1)}}{[\mathbf{W}^{(l+1)} (\mathbf{H}^{(l)} + \epsilon\mathbf{1})]_{mi}}} - \epsilon}$$

$$\tilde{h}_{ki}^{(l+1)} \leftarrow \max\left\{\tilde{h}_{ki}^{(l+1)}, 0\right\}$$

#### Desired Properties

Property 1: Likelihood is always non-decreasing (Objective Function should be non-increasing)

```
Property 2: W,H are non-negative
```

Property 3: No division by zero

How to make sure the likelihood is non-decreasing or the negative log-likelihood is non-increasing?

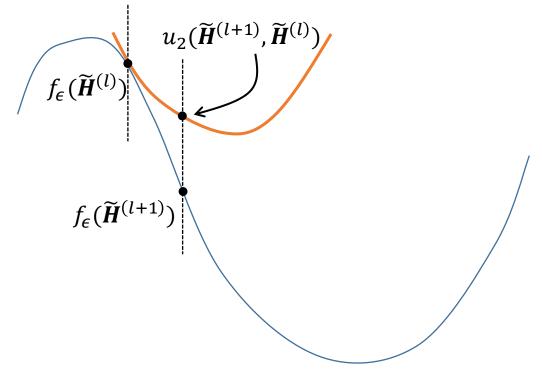
Suppose 
$$\tilde{h}_{ki}^{(l+1)} = 0$$
 and  $\tilde{h}_{k',i'}^{(l+1)} = \tilde{h}_{k',i'}^{(l)}$  for all  $(k',i') \neq (k,i)$ .  
Want to show:

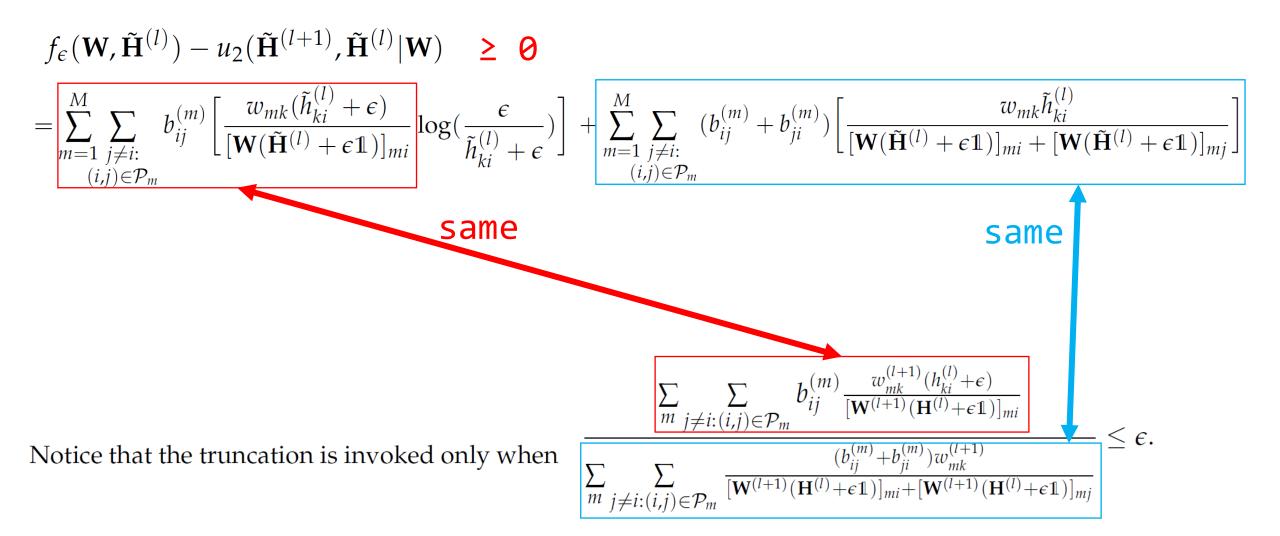
$$f_{\epsilon}(\boldsymbol{W}, \widetilde{\boldsymbol{H}}^{(l+1)}) \leq f_{\epsilon}(\boldsymbol{W}, \widetilde{\boldsymbol{H}}^{(l)})$$

Always satisfied by the property of auxiliary function:  $f_{\epsilon}(W, \widetilde{H}^{(l+1)}) \leq u_{2}(\widetilde{H}^{(l+1)}, \widetilde{H}^{(l)}|W)$ 

Suffices to show:

 $u_2(\widetilde{H}^{(l+1)}, \widetilde{H}^{(l)}|W) \leq f_{\epsilon}(W, \widetilde{H}^{(l)})$ 





$$\begin{aligned} f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) &- u_{2}(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)} | \mathbf{W}) \\ \geq &- \log\left(\frac{h_{ki}^{(l)} + \epsilon}{\epsilon}\right) \cdot \epsilon \cdot \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mj}} \right] \\ &+ \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mj}}\right] \\ &= \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mj}} \left(-\epsilon \log(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}) + \tilde{h}_{ki}^{(l)}\right)\right] \\ &\geq 0 \end{aligned}$$

$$\begin{aligned} &-\epsilon \log(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}) + \tilde{h}_{ki}^{(l)} \ge 0 \\ &\Rightarrow \frac{\tilde{h}_{ki}^{(l)}}{\epsilon} \ge \log(\frac{\tilde{h}_{ki}^{(l)}}{\epsilon} + 1) \\ &\Rightarrow \exp(\frac{\tilde{h}_{ki}^{(l)}}{\epsilon}) \ge \frac{\tilde{h}_{ki}^{(l)}}{\epsilon} + 1 \end{aligned} \qquad e^{x} \ge x + 1, \forall x \ge 0 \end{aligned}$$

Property 1: likelihood is always non-decreasing V

Property 2: W,H are non-negative V

Property 3: No division by zero 🗸

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

#### 2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



Pr(i beats j in tournament m) =

 $\sum_{k} \tilde{w}_{mk}(\tilde{h}_{ki} + \epsilon)$  $\sum_{k} \tilde{w}_{mk}(h_{kj} + \epsilon) + \sum_{k} \tilde{w}_{mk}(h_{kj} + \epsilon)$ 

Row Normalization of W and Global Normalization of H: Keep likelihood unchanged  $\sum_k w_{mk} = 1, \sum_{k,i} h_{ki} = 1$ 

 $\alpha$ 

Column Normalization of W and Global Normalization of H: Keep likelihood unchanged  $\sum_m w_{mk} = 1, \sum_{k,i} h_{ki} = 1$ 

 $\sum_{m} \sum_{i} [\mathbf{\Lambda}]_{mi} = \sum_{m} \sum_{i} \sum_{k} w_{mk} h_{ki} = \sum_{i} \sum_{k} h_{ki} \sum_{m} w_{mk} = \sum_{k,i} h_{ki} = 1$ 

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis
- 2. Experiments Using Real Life Dataset
  - Dataset Information
  - Running of Algorithm
  - Men Players
  - Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



$$x^{(l)} \xrightarrow{l \longrightarrow \infty}$$
 Stationary point of  $f(x)$ 

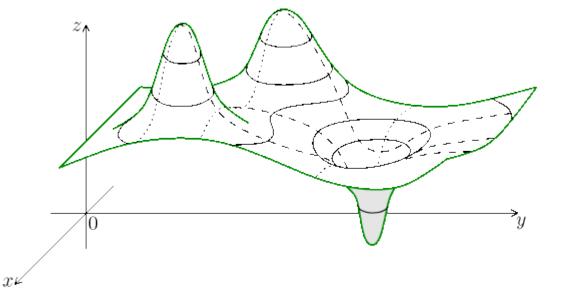
#### Directional Derivative:

$$f'(x;d) = \lim_{\lambda \to 0} \frac{f(x+\lambda d) - f(x)}{\lambda}$$

31

Stationary Point  $(\overline{W}, \overline{H})$  of:

$$\min_{\boldsymbol{W}\in\boldsymbol{R}_{++}^{M\times K}, \boldsymbol{H}\in\boldsymbol{R}_{++}^{K\times N}} f_{\boldsymbol{\epsilon}} (\boldsymbol{W}, \boldsymbol{H})$$



If for  $f_1(W|\overline{H}) = f_{\epsilon}(W,\overline{H})$ ,  $f_2(H|\overline{W}) = f_{\epsilon}(\overline{W},H)$ :

$$f_1'(\overline{W}; W - \overline{W} | \overline{H}) \ge 0, \qquad \forall W \in \mathbb{R}_{++}^{M \times K}$$
  
$$f_2'(\overline{H}; H - \overline{H} | \overline{W}) \ge 0, \qquad \forall H \in \mathbb{R}_{++}^{K \times N}$$

Convergence analysis of block successive minimization methods

Given 
$$f(x)$$
 to be minimized on domain  $\chi = \prod_{i=1}^{n} \chi_i$   $n = 2, \quad \chi = R_{++}^{M \times K} \times R_{++}^{K \times N}$ 

**(P1)** 
$$F_i(\tilde{x}_i|\tilde{x}) = f(\tilde{x})$$
, for any  $\tilde{x} \in \chi$ 

(P2) 
$$F_i(x_i|\tilde{x}) \le f(\tilde{x}_1, \dots, x_i, \dots, \tilde{x}_n)$$
, for any  $(x_i, \tilde{x}) \in \chi_i \times \chi$ 

(P3)  $F_i(\cdot | \cdot)$  is differentiable on  $int \chi_i \times int \chi_i$ there exits a function  $g(\cdot | \tilde{x})$ :  $\nabla F_i(\cdot | \tilde{x}) = g(\cdot / \tilde{x}_i | \tilde{x})$ 

(P4) Define 
$$f_i(\cdot | \tilde{x}) : x_i \mapsto f(\tilde{x}_1, \dots, x_i, \dots, \tilde{x}_n)$$
, for any  $(x_i, \tilde{x}) \in \chi_i \times \chi$   
Then for any  $\hat{x} \in \chi_i$ ,  $F'_i(x_i; \hat{x}_i - x_i | \tilde{x}_i)|_{x_i = \tilde{x}_i} = f'_i(x_i; \hat{x}_i - x_i | \tilde{x}_i)|_{x_i = \tilde{x}_i}$ 

(P5) 
$$F_i(\cdot | \tilde{x})$$
 is strictly convex on  $\chi_i$ , for any  $\tilde{x} \in \chi$ 

M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization , 23(2):1126--1153, 2013.

 $f(x) = f_{\epsilon}(W, H)$ 

 $f_1(W|H^{(l)}) = f_{\epsilon}(W, H^{(l)})$ 

 $f_2(H|W^{(l+1)}) = f_{\epsilon}(W^{(l+1)}, H)$ 

 $F_{1}(x_{1}|\tilde{x}) = u_{1}(W, W^{(l)}|H^{(l)})$  $F_{2}(x_{2}|\tilde{x}) = u_{2}(H, H^{(l)}|W^{(l+1)})$   $\bigvee (P3) \qquad u_{1} \text{ and } u_{2} \text{ are both differentiable}$   $\bigvee (P4) \qquad u_{1}'(W; \widehat{W} - W | \widetilde{W}, \widetilde{H})|_{W = \widetilde{W}} = f_{1}'(W; \widehat{W} - W | \widetilde{H})$   $u_{2}'(H; \widehat{H} - H | \widetilde{W}, \widetilde{H})|_{H = \widetilde{H}} = f_{2}'(H; \widehat{H} - H | \widetilde{W})$   $\bigvee (P5) \qquad \frac{\partial^{2}}{\partial w_{mk}^{2}} u_{1}(W, W^{(l)} | H^{(l)}) = \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left( \frac{w_{mk}^{(l)}(h_{ki}^{(l)} + \epsilon)}{[W^{(l)}(H^{(l)} + \epsilon\mathbb{1})]_{mi}} \frac{1}{w_{mk}^{2}} \right)$   $\frac{\partial^{2}}{\partial h_{ki}^{2}} u_{2}(H, W^{(l+1)} | H^{(l)}) = \sum_{m} \sum_{j \neq i: (i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left( \frac{w_{mk}^{(l+1)}(h_{ki}^{(l)} + \epsilon)}{[W^{(l+1)}(H^{(l)} + \epsilon\mathbb{1})]_{mi}} \frac{1}{(h_{ki} + \epsilon)^{2}} \right)$   $w_{mk} > 0, h_{ki} \ge 0$ 

**Theorem 1.** If **W** and **H** are initialized to have positive entries (i.e.,  $\mathbf{W}^{(0)} \in \mathbb{R}_{++}^{M \times K} = (0, \infty)^{M \times K}$  and  $\mathbf{H}^{(0)} \in \mathbb{R}_{++}^{K \times N}$ ) and  $\epsilon > 0$ , then every limit point of  $\{(\mathbf{W}^{(l)}, \mathbf{H}^{(l)})\}_{l=1}^{\infty}$  generated by Algorithm 1 is a stationary point of  $\mathbf{W} \in \mathbb{R}_{+}^{M \times K}, \mathbf{H} \in \mathbb{R}_{+}^{K \times N}$   $f_{\epsilon}(\mathbf{W}, \mathbf{H})$ 

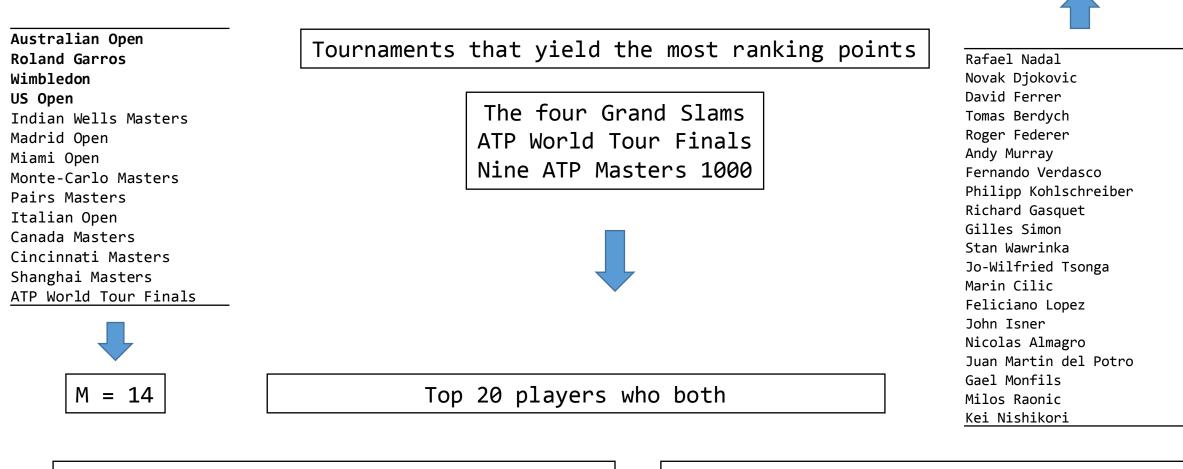
R. Zhao and V. Y. F. Tan, "A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized NMF", IEEE Transactions on Signal Processing, Vol. 66, No. 1, Pages 129 – 138, Jan 2018

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

#### 2. Experiments Using Real Life Dataset

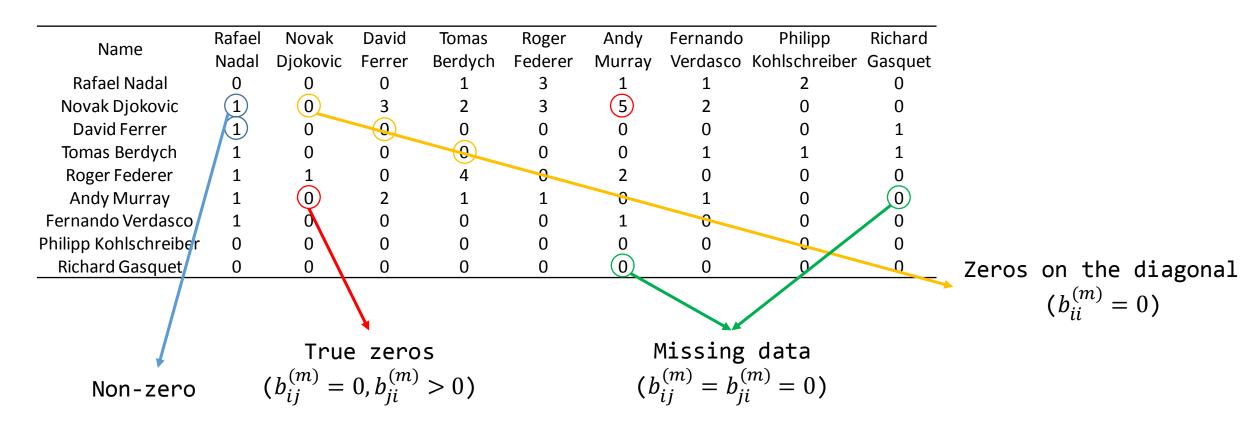
- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison





Have the highest number of participation in the 14 tournaments from 2008-2017

N = 20



|                       | Male                            |            | Female                          |            |
|-----------------------|---------------------------------|------------|---------------------------------|------------|
| Total Entries         | $14 \times 20 \times 20 = 5600$ |            | $16 \times 20 \times 20 = 6400$ |            |
|                       | Number                          | Percentage | Number                          | Percentage |
| Non-zero              | 1024                            | 18.30%     | 788                             | 12.31%     |
| Zeros on the diagonal | 280                             | 5.00%      | 320                             | 5.00%      |
| Missing data          | 3478                            | 62.10%     | 4598                            | 71.84%     |
| True zeros            | 818                             | 14.60%     | 694                             | 10.85%     |

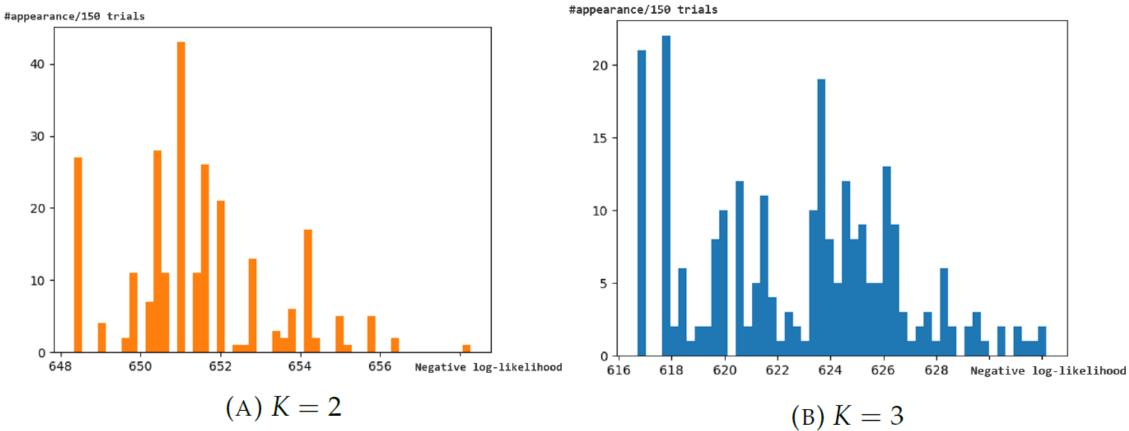
- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



#### Stopping condition:

$$\operatorname{diff} \leftarrow \max\left\{ \max_{m,k} \left| w_{mk}^{(l+1)} - w_{mk}^{(l)} \right|, \max_{k,i} \left| h_{ki}^{(l+1)} - h_{ki}^{(l)} \right| \right\} < 10^{-6}$$



- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



# Learned W Dictionary Matrix for men

| Tournaments          | Row Normalization |          |  | Column Normalization |           |   |  |  |
|----------------------|-------------------|----------|--|----------------------|-----------|---|--|--|
| Australian Open      | 5.77E-01          | 4.23E-01 |  | 1.15E-01             | 7.66E-02  |   |  |  |
| French Open          | 3.44E-01          | 6.56E-01 |  | 8.66E-02             | 1.50E-01  |   |  |  |
| Wimbledon            | 6.43E-01          | 3.57E-01 |  | 6.73E-02             | 3.38E-02  |   |  |  |
| US Open              | 5.07E-01          | 4.93E-01 |  | 4.62E-02             | 4.06E-02  |   |  |  |
| Indian Wells Masters | 6.52E-01          | 3.48E-01 |  | 1.34E-01             | 6.50E-02  |   |  |  |
| Madrid Open          | 3.02E-01          | 6.98E-01 |  | 6.43E-02             | 1.34E-01  | 3 |  |  |
| Miami Open           | 5.27E-01          | 4.73E-01 |  | 4.95E-02             | 4.02E-02  |   |  |  |
| Monte-Carlo Masters  | 1.68E-01          | 8.32E-01 |  | 2.24E-02             | 1.01E-01  | 4 |  |  |
| Paris Masters        | 1.68E-01          | 8.32E-01 |  | 1.29E-02             | 5.76E-02  |   |  |  |
| Italian Open         | 0.00E-00          | 1.00E-00 |  | 1.82E-104            | 1.36E-01  | 2 |  |  |
| Canadian Open        | 1.00E-00          | 0.00E-00 |  | 1.28E-01             | 1.78E-152 |   |  |  |
| Cincinnati Masters   | 5.23E-01          | 4.77E-01 |  | 1.13E-01             | 9.36E-02  |   |  |  |
| Shanghai Masters     | 7.16E-01          | 2.84E-01 |  | 1.13E-01             | 4.07E-02  |   |  |  |
| The ATP Finals       | 5.72E-01          | 4.28E-01 |  | 4.59E-02             | 3.11E-02  |   |  |  |

|                    |                        | non-clay | clay              |               |
|--------------------|------------------------|----------|-------------------|---------------|
|                    | Players                | matri    | ix $\mathbf{H}^T$ | Total Matches |
| Hard Court player> | Novak Djokovic         | 1.20E-01 | 9.98E-02          | 283           |
| Clay player ———>   | Rafael Nadal           | 2.48E-02 | 1.55E-01          | 241           |
| Grass player ———>  | Roger Federer          | 1.15E-01 | 2.34E-02          | 229           |
| Non-clay player>   | Andy Murray            | 7.57E-02 | 8.43E-03          | 209           |
|                    | Tomas Berdych          | 0.00E-00 | 3.02E-02          | 154           |
|                    | David Ferrer           | 6.26E-40 | 3.27E-02          | 147           |
| Clay player ———>   | Stan Wawrinka          | 2.93E-55 | 4.08E-02          | 141           |
|                    | Jo-Wilfried Tsonga     | 3.36E-02 | 2.71E-03          | 121           |
|                    | <b>Richard</b> Gasquet | 5.49E-03 | 1.41E-02          | 102           |
|                    | Juan Martin del Potro  | 2.90E-02 | 1.43E-02          | 101           |
|                    | Marin Cilic            | 2.12E-02 | 0.00E-00          | 100           |
|                    | Fernando Verdasco      | 1.36E-02 | 8.79E-03          | 96            |
|                    | Kei Nishikori          | 7.07E-03 | 2.54E-02          | 94            |
|                    | Gilles Simon           | 1.32E-02 | 4.59E-03          | 83            |
|                    | Milos Raonic           | 1.45E-02 | 7.25E-03          | 78            |
|                    | Philipp Kohlschreiber  | 2.18E-06 | 5.35E-03          | 76            |
|                    | John Isner             | 2.70E-03 | 1.43E-02          | 78            |
|                    | Feliciano Lopez        | 1.43E-02 | 3.31E-03          | 75            |
|                    | Gael Monfils           | 3.86E-21 | 1.33E-02          | 70            |
|                    | Nicolas Almagro        | 6.48E-03 | 6.33E-06          | 60            |

# Learned Transpose H Coefficient Matrix for men

# $\Lambda = WH$

| Tournament           | Novak<br>Djokovic | Rafael Nadal | Roger Federer | Andy Murray | Stan Wawrinka     |
|----------------------|-------------------|--------------|---------------|-------------|-------------------|
| Australian Open      | 2.16E-02          | 1.54E-02     | 1.47E-02      | 9.13E-03    | 3.34E-03          |
| French Open          | 1.39E-02          | 1.43E-02     | 7.12E-03      | 4.11E-03    | 3.48E-03 5        |
| Wimbledon            | 2.63E-02          | 1.66E-02     | 1.91E-02      | 1.20E-02    | 3.39E-03          |
| US Open              | 1.17E-02          | 9.42E-03     | 7.38E-03      | 4.51E-03    | 2.13E-03          |
| Indian Wells Masters | 2.29E-02          | 1.42E-02     | 1.68E-02      | 1.06E-02    | 2.88E-03          |
| Madrid Open          | 1.38E-02          | 1.51E-02     | 6.63E-03      | 3.75E-03    | 3.72E-03 <b>4</b> |
| Miami Open           | 2.95E-02          | 2.30E-02     | 1.90E-02      | 1.17E-02    | 5.15E-03 (1       |
| Monte-Carlo Masters  | 1.19E-02          | 1.53E-02     | 4.46E-03      | 2.27E-03    | 3.92E-03 (3       |
| Paris Masters        | 7.29E-03          | 9.37E-03     | 2.73E-03      | 1.39E-03    | 2.40E-03          |
| Italian Open         | 1.19E-02          | 1.84E-02     | 2.78E-03      | 1.00E-03    | 4.87E-03 <b>2</b> |
| Canadian Open        | 1.16E-02          | 2.40E-03     | 1.11E-02      | 7.32E-03    | 2.42E-51          |
| Cincinnati Masters   | 1.82E-02          | 1.43E-02     | 1.17E-02      | 7.17E-03    | 3.20E-03          |
| Shanghai Masters     | 8.12E-03          | 4.38E-03     | 6.29E-03      | 4.01E-03    | 8.24E-04          |
| The ATP Finals       | 1.13E-02          | 8.13E-03     | 7.63E-03      | 4.74E-03    | 1.77E-03          |

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison
  - Prediction Task & Result Comparison



# Chronological Order

| Tournaments                | Row Norn  | nalization | Column No | rmalization |
|----------------------------|-----------|------------|-----------|-------------|
| Australian Open            | 1.00E-00  | 3.74E-26   | 1.28E-01  | 3.58E-23    |
| Qatar Open                 | 6.05E-01  | 3.95E-01   | 1.05E-01  | 4.94E-02    |
| Dubai Tennis Championships | 1.00E-00  | 1.42E-43   | 9.47E-02  | 3.96E-39    |
| Indian Wells Open          | 5.64E-01  | 4.36E-01   | 8.12E-02  | 4.51E-02    |
| Miami Open                 | 5.86E-01  | 4.14E-01   | 7.47E-02  | 3.79E-02    |
| Madrid Open                | 5.02E-01  | 4.98E-01   | 6.02E-02  | 4.29E-02    |
| Italian Open               | 3.61E-01  | 6.39E-01   | 5.22E-02  | 6.63E-02    |
| French Open                | 1.84E-01  | 8.16E-01   | 2.85E-02  | 9.04E-02    |
| Wimbledon                  | 1.86E-01  | 8.14E-01   | 3.93E-02  | 1.24E-01    |
| Canadian Open              | 4.59E-01  | 5.41E-01   | 5.81E-02  | 4.92E-02    |
| Cincinnati Open            | 9.70E-132 | 1.00E-00   | 5.20E-123 | 1.36E-01    |
| US Open                    | 6.12E-01  | 3.88E-01   | 8.04E-02  | 3.66E-02    |
| Pan Pacific Open           | 1.72E-43  | 1.00E-00   | 7.82E-33  | 1.57E-01    |
| Wuhan Open                 | 1.00E-00  | 6.87E-67   | 1.41E-01  | 1.60E-61    |
| China Open                 | 2.26E-01  | 7.74E-01   | 4.67E-02  | 1.15E-01    |
| WTA Finals                 | 1.17E-01  | 8.83E-01   | 9.30E-03  | 5.03E-02    |

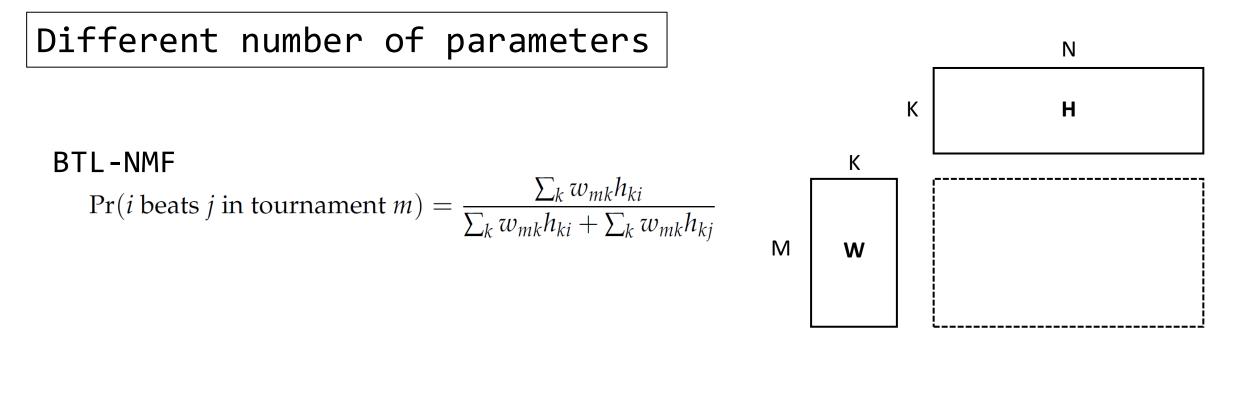
| Players                  | matri      | $\mathbf{x} \mathbf{H}^T$ | Total Matches |
|--------------------------|------------|---------------------------|---------------|
| Serena Williams          | 5.93E-02   | 1.44E-01                  | 130           |
| Agnieszka Radwanska      | 2.39E-02   | 2.15E-02                  | 126           |
| Victoria Azarenka        | 7.04E-02   | 1.47E-02                  | 121           |
| Caroline Wozniacki       | 3.03E-02   | 2.43E-02                  | 115           |
| Maria Sharapova          | 8.38E-03   | 8.05E-02                  | 112           |
| Simona Halep             | 1.50E-02   | 3.12E-02                  | 107           |
| Petra Kvitova            | 2.39E-02   | 3.42E-02                  | 99            |
| Angelique Kerber         | 6.81E-03   | 3.02E-02                  | 96            |
| Samantha Stosur          | 4.15E-04   | 3.76E-02                  | 95            |
| Ana Ivanovic             | 9.55 E-03  | 2.60E-02                  | 85            |
| Jelena Jankovic          | 1.17E-03   | 2.14E-02                  | 79            |
| Anastasia Pavlyuchenkova | 6.91E-03   | 1.33E-02                  | 79            |
| Carla Suarez Navarro     | 3.51E-02   | 5.19E-06                  | 75            |
| Dominika Cibulkova       | 2.97E-02   | 1.04E-02                  | 74            |
| Lucie Safarova           | 0.00E + 00 | 3.16E-02                  | 69            |
| Elina Svitolina          | 5.03E-03   | 1.99E-02                  | 59            |
| Sara Errani              | 7.99E-04   | 2.69E-02                  | 58            |
| Karolina Pliskova        | 9.92E-03   | 2.36E-02                  | 57            |
| Roberta Vinci            | 4.14E-02   | 0.00E + 00                | 53            |
| Marion Bartoli           | 1.45E-02   | 1.68E-02                  | 39            |

Learned Transpose H Coefficient Matrix for women 45

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison & Algorithm
  - Prediction Task & Result Comparison





# Mixture BTL N $Pr(i \text{ beats } j \text{ in tournament } m) = \sum_{k} P(k) \frac{\lambda_{ki}}{\lambda_{ki} + \lambda_{kj}}$ K H I K I

Assignments

**EM algorithm**  $\theta = \{\{P(k)\}, \{\lambda_{ki}\}\}$  Initialization:  $P^{(0)}(K) = 1/K$ , randomize  $\lambda_{ki}^{(0)}$  nonnegative  $\ell(\mathcal{D};\theta) = \sum_{(i,j)\in E} b_{ij} \log\left[\sum_{k} P(k)\left(\frac{\lambda_{ki}}{\lambda_{ki} + \lambda_{kj}}\right)\right]$ Hard Assignments  $\ell(\mathcal{D},\mathcal{K};\theta) = \sum_{k} \sum_{(i,j)\in E} b_{ij}\delta(k|ij) \log\left[P(k)\left(\frac{\lambda_{ki}}{\lambda_{ki}+\lambda_{kj}}\right)\right]$ **E-STEP** Soft posterior Assignments  $p^{(l)}(k|ij) = P(k|ij, \theta^{(l)})$  $\mathbb{E}\{\ell(\mathcal{D},\mathcal{K};\theta)|\mathcal{D},\theta^{(l)}\} = \sum_{k}\sum_{(i,j)\in E} b_{ij}p^{(l)}(k|ij)\log\left[P(k)\left(\frac{\lambda_{ki}}{\lambda_{ki}+\lambda_{kj}}\right)\right]$ **M-STEP**  $\mathbf{M}$  s.t.  $\sum_{k} P(k) = 1$  $P^{(l+1)}(k) = \frac{\sum_{(i,j)\in E} b_{ij} p^{(l)}(k|ij)}{\sum_{(i,j)\in E} b_{ij}} \qquad \lambda_{ki}^{(l+1)} = \frac{\sum_{j\neq i} \sum_{k} p^{(l)}(k|ij) b_{ij}}{\sum_{i\neq i} \left(\sum_{k} p^{(l)}(k|ij) b_{ij} + \sum_{k} p^{(l)}(k|ji) b_{ji}\right) \frac{1}{\lambda_{ki}^{(l)} + \lambda_{ki}^{(l)}}}$ 

# Mixture BTL solution $\rightarrow$ Unstable

| Players                | K = 1      | K :      | = 2      | K = 2 Trial 1 |          | <i>K</i> = 2 | Trial 2  |
|------------------------|------------|----------|----------|---------------|----------|--------------|----------|
| Novak Djokovic         | 2.14E-01   | 7.14E-02 | 1.33E-01 | 1.20E-01      | 2.91E-02 | 3.40E-05     | 9.42E-05 |
| Rafael Nadal           | 1.79E-01   | 1.00E-01 | 4.62E-02 | 1.07E-01      | 2.25E-02 | 1.47E-05     | 1.15E-04 |
| Roger Federer          | 1.31E-01   | 1.35E-01 | 1.33E-02 | 1.53E-01      | 1.11E-02 | 9.29E-03     | 1.83E-05 |
| Andy Murray            | 7.79E-02   | 6.82E-02 | 4.36E-03 | 1.43E-01      | 4.39E-03 | 2.46E-05     | 1.52E-05 |
| Tomas Berdych          | 3.09E-02   | 5.26E-02 | 2.85E-04 | 2.37E-12      | 6.59E-03 | 6.51E-19     | 1.60E-05 |
| David Ferrer           | 3.72E-02   | 1.79E-02 | 4.28E-03 | 4.74E-02      | 2.19E-03 | 1.56E-05     | 5.89E-06 |
| Stan Wawrinka          | 4.32E-02   | 2.49E-02 | 4.10E-03 | 6.26E-07      | 7.21E-93 | 2.11E-05     | 6.29E-06 |
| Jo-Wilfried Tsonga     | 2.98E-02   | 3.12E-12 | 1.08E-01 | 2.03E-01      | 5.88E-04 | 9.90E-01     | 1.04E-06 |
| <b>Richard Gasquet</b> | 2.34E-02   | 1.67E-03 | 2.97E-03 | 4.98E-04      | 1.62E-03 | 5.30E-08     | 4.81E-06 |
| Juan Martin del Potro  | 4.75E-02   | 8.54E-05 | 4.85E-02 | 4.26E-06      | 8.01E-03 | 1.90E-05     | 7.19E-06 |
| Marin Cilic            | 1.86E-02   | 3.37E-05 | 2.35E-03 | 1.56E-09      | 2.12E-03 | 3.49E-16     | 4.11E-06 |
| Fernando Verdasco      | 2.24E-02   | 5.78E-02 | 8.00E-09 | 2.75E-17      | 7.12E-03 | 6.54E-05     | 9.72E-07 |
| Kei Nishikori          | 3.43E-02   | 5.37E-08 | 3.58E-02 | 1.83E-12      | 8.58E-03 | 4.18E-23     | 1.77E-05 |
| Gilles Simon           | 1.90E-02   | 7.65E-05 | 5.16E-03 | 5.14E-06      | 1.31E-03 | 2.47E-10     | 4.13E-06 |
| Milos Raonic           | 2.33E-02   | 2.61E-04 | 6.07E-03 | 2.07E-07      | 2.84E-03 | 3.99E-08     | 6.00E-06 |
| Philipp Kohlschreiber  | 7.12E-03   | 1.78E-25 | 3.55E-03 | 0.00E+00      | 1.13E-03 | 7.99E-06     | 5.0E-324 |
| John Isner             | 1.84E-02   | 2.99E-02 | 1.75E-08 | 6.93E-02      | 3.21E-04 | 1.73E-22     | 9.47E-06 |
| Feliciano Lopez        | 1.89E-02   | 1.35E-02 | 3.10E-04 | 3.67E-02      | 4.93E-04 | 8.57E-06     | 1.38E-06 |
| Gael Monfils           | 1.66E-02   | 5.38E-10 | 6.53E-03 | 6.05E-14      | 2.85E-03 | 1.06E-12     | 4.00E-06 |
| Nicolas Almagro        | 7.24E-03   | 1.27E-15 | 1.33E-03 | 4.18E-07      | 2.14E-04 | 1.04E-14     | 8.10E-07 |
| Mixture weights        | 1.00E + 00 | 4.72E-01 | 5.28E-01 | 4.72E-01      | 5.28E-01 | 3.32E-01     | 6.68E-01 |
| Log-likelihoods        | -682.13    | -65'     | 7.56     | -657          | 7.56     | -656.47      |          |

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
  - Qualitative Comparison & Algorithm
  - Prediction Task & Result Comparison



S = subset of the collected dataset D

 $|S| \approx 10\% * |non-zero D|$ 

Training on  $D' = \bigtriangledown S$  Learned (WH) matrix In S, If Pr(i beats j in tournament m) > 0.5 i is predicted to beat j in that match Accuracy = # correct predictions |S|

# $S_k = all$ the matches played in year k

| Female |                  |                      |         |      | Male             |                      |         |  |  |  |
|--------|------------------|----------------------|---------|------|------------------|----------------------|---------|--|--|--|
| Year   | BTL-NMF accuracy | Mixture BTL accuracy | $ S_k $ | Year | BTL-NMF accuracy | Mixture BTL accuracy | $ S_k $ |  |  |  |
| 2009   | 0.583            | 0.583                | 48      | 2008 | 0.634            | 0.634                | 93      |  |  |  |
| 2010   | 0.541            | 0.656                | 61      | 2009 | 0.632            | 0.624                | 117     |  |  |  |
| 2011   | 0.525            | 0.537                | 80      | 2010 | 0.676            | 0.667                | 108     |  |  |  |
| 2012   | 0.581            | 0.558                | 129     | 2011 | 0.716            | 0.730                | 141     |  |  |  |
| 2013   | 0.656            | 0.606                | 122     | 2012 | 0.673            | 0.699                | 153     |  |  |  |
| 2014   | 0.575            | 0.592                | 120     | 2013 | 0.642            | 0.682                | 148     |  |  |  |
| 2015   | 0.569            | 0.612                | 116     | 2014 | 0.662            | 0.655                | 151     |  |  |  |
| 2016   | 0.494            | 0.530                | 83      | 2015 | 0.740            | 0.700                | 150     |  |  |  |
| 2017   | 0.549            | 0.549                | 51      | 2016 | 0.692            | 0.692                | 117     |  |  |  |
| 2018   | 0.518            | 0.428                | 56      | 2017 | 0.740            | 0.740                | 73      |  |  |  |

# Future Plans

1. Larger and longer dataset: Greatest Players of all time

2. Epsilon : Bayesian Interpretation?

# Thank you!

For future details, please see the full paper at <a href="https://arxiv.org/abs/1903.06500">https://arxiv.org/abs/1903.06500</a>

Datasets and Code: <u>https://github.com/XiaRui1996/btl-nmf</u>

Will be presented at ECML/PKDD next week

