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2005 2006 

Roger Federer 
3 Grand Slam 

2010 

Rafael Nadal 
3 Grand Slam 

2011 2015 2016 

Novak Djokovic 
5 Grand Slam 

1960s 

Rod Laver 
3 Grand Slam 

 
Who is the greatest players  

of all time? 

 
52 weeks 

10 yeas 
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Motivation 
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Grass Outdoors 

Australian Open 
Hard Outdoors 

French Open 
Clay Outdoors 

US Open 
Hard Outdoors 3 

Latent Variables: Surface Type? 
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𝜆mi 𝜆mj 

Pr(player i beats player j in tournament m) =     𝜆𝑚𝑖𝜆𝑚𝑖+ 𝜆𝑚𝑗 

𝜆𝑚𝑖: skill of player i in tournament m 
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 Skill on type-I surf 

Skill on type-II surf 

Hybrid of BTL and NMF 
NMF 

BTL 
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GIVEN: D ~ M (N x N) matrices 

N players 

D =  

N  
players 

𝑏𝑖𝑗(𝑚) M tournaments 

Number of times  
player i beat player j  

in tournament m 

Output:  W ~ (M x K) matrix 

  H ~ (K x N) matrix 

K 

N 

W 

H 

K 

M 

Such that is maximized 

Likelihood =   ( 𝐖𝐇 𝑚𝑖𝐖𝐇 𝑚𝑖+ 𝐖𝐇 𝑚𝑗)𝑏𝑖𝑗(𝑚)(𝑖,𝑗)𝑀𝑚=1  
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Task: Minimize the negative log-likelihood 

Find     argmin (                    ) 
 
 

       = argmin (                                                            ) 

Convex? No!  

 

Objective function not guaranteed to decrease using standard gradient-based algorithms 
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W,H≥ 𝟎 
W,H≥ 𝟎 
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f(x) 

u(x, x  ) (l) 

x (l) 
min u(x     , x  ) (l) 

x (l+1) = x min 

u(x, x     ) (l+1) 

f(x  ) 
(l) 

f(x     ) (l+1) 

x   Stationary point of   f(x)   (l) l ∞ 

Majorization-Minimization algorithm 
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min   𝑓(𝐖,𝐇|𝒟) 
𝑢1(𝐖,𝐖 𝑙 |𝐇(𝑙)) 𝐖 𝑙+1  𝑢2(𝐇, 𝐇(𝑙) |𝐖 𝑙+1 ) 𝐇 𝑙+1  
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By Taylor’s Theorem 

y 

y 

x 
x 
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𝑢 1(𝐖,𝐖 𝑙 |𝐇(𝑙)) = 

By Jensen’s Inequality 
- log(x) is a convex function 
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Auxiliary Functions 
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Updates for MM algorithm 
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0 

0 
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May Divide by 0 or small numbers 



Property 1: Likelihood is always non-decreasing 
(Objective Function should be non-increasing) 
 
 
Property 2: W,H are non-negative 
 
 
Property 3: No division by zero/Numerical problems 

17 

Desired Properties 



+ 𝝐 
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Likelihood (W,H|𝒟) = 

Proposed Solution 



~ 
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Property 1: Likelihood is always non-decreasing 
(Objective Function should be non-increasing) 
 
 
Property 2: W,H are non-negative 
 
 
Property 3: No division by zero 

√ 

√ 
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Desired Properties 



How to make sure the likelihood is non-decreasing  
or the negative log-likelihood is non-increasing? 

Want to show: 

Always satisfied  
by the property of auxiliary function:  

Suffices to show: 

𝑢2(𝑯 𝑙+1 , 𝑯 𝑙 ) 𝑓𝜖(𝑯 𝑙 ) 
𝑓𝜖(𝑯 𝑙+1 ) 

𝑓𝜖 𝑾,𝑯 𝑙+1  ≤  𝑓𝜖 𝑾,𝑯 𝑙  

𝑓𝜖 𝑾,𝑯 𝑙+1  ≤  𝑢2 𝑯 𝑙+1 ,𝑯 𝑙 |𝑾  

𝑢2 𝑯 𝑙+1 , 𝑯 𝑙 |𝑾 ≤  𝑓𝜖 𝑾,𝑯 𝑙  
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≥ 0 

same same 
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≥ 0             
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Property 1: likelihood is always non-decreasing 
 
 
Property 2: W,H are non-negative 
 
 
Property 3: No division by zero 

√ 

√ 

√ 
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27 

Pr(i beats j in tournament m) = 



𝛼 = ? 
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Row Normalization of W and Global Normalization of H:  

Keep likelihood unchanged  



𝛼 = ? 
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Column Normalization of W and Global Normalization of H:  

Keep likelihood unchanged  



1. BTL-NMF Algorithm 
• Majorization-Minimization Algorithm 

• Resolution of Numerical Problems 

• Normalization 

• Convergence Analysis 

 

2. Experiments Using Real Life Dataset 
• Dataset Information 

• Running of Algorithm 

• Men Players 

• Women Players 

 

3. Comparison with Mixture BTL 
• Qualitative Comparison 

• Prediction Task & Result Comparison 

 

30 



Directional Derivative: 

 𝑓′ 𝑥; 𝑑 =  lim𝜆→0   𝑓 𝑥 + 𝜆𝑑 − 𝑓(𝑥)𝜆  

 
 

Stationary Point (𝑾,𝑯 ) of: 
 min𝑾∈ 𝑹++𝑀×𝐾,  𝑯∈ 𝑹++𝐾×𝑁 𝑓𝜖  (𝑾,𝑯) 

 
 

If for 𝑓1 𝑾  𝑯 ) = 𝑓𝜖(𝑾,𝑯 ), 𝑓2 𝑯  𝑾) = 𝑓𝜖(𝑾,𝑯): 
 𝑓1′ 𝑾;𝑾−𝑾  𝑯 )  ≥ 0, ∀ 𝑾 ∈  𝑹++𝑀×𝐾 𝑓2′ 𝑯 ;𝑯 −𝑯  𝑾)  ≥ 0,   ∀ 𝑯 ∈  𝑹++𝐾×𝑁 
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x   Stationary point of   f(x)   (l) l ∞ 
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Convergence analysis of block successive minimization methods 

Given 𝑓 𝑥   to be minimized on domain 𝜒 =   𝜒𝑖𝑛
𝑖=1  

(P1)   𝐹𝑖 𝑥 𝑖 𝑥 = 𝑓 𝑥 , for any 𝑥 ∈  𝜒 
 
(P2)   𝐹𝑖 𝑥𝑖 𝑥 ≤ 𝑓(𝑥 1 , … , 𝑥𝑖 ,… , 𝑥 𝑛), for any 𝑥𝑖 , 𝑥 ∈  𝜒𝑖 × 𝜒 
 
(P3)   𝐹𝑖 ∙ ∙  is differentiable on 𝑖𝑛𝑡 𝜒𝑖  × 𝑖𝑛𝑡 𝜒𝑖 
 there exits a function 𝑔 ∙ 𝑥 :  𝛻𝐹𝑖 ∙ 𝑥 = 𝑔(∙/𝑥 𝑖|𝑥 ) 
 
(P4) Define 𝑓𝑖 ∙ 𝑥 ∶  𝑥𝑖  ↦ 𝑓(𝑥 1, … , 𝑥𝑖 ,… , 𝑥 𝑛), for any 𝑥𝑖 , 𝑥 ∈  𝜒𝑖 × 𝜒 
 Then for any 𝑥  ∈  𝜒𝑖 , 𝐹𝑖′ 𝑥𝑖;𝑥 𝑖 − 𝑥𝑖 𝑥 𝑖)|𝑥𝑖=𝑥 𝑖 = 𝑓𝑖′ 𝑥𝑖;𝑥 𝑖 − 𝑥𝑖 𝑥 𝑖) |𝑥𝑖=𝑥 𝑖 
 
(P5) 𝐹𝑖(∙ |𝑥 ) is strictly convex on 𝜒𝑖, for any 𝑥 ∈  𝜒 
 

𝒏 = 𝟐, 𝝌 = 𝑹++𝑴×𝑲 ×𝑹++𝑲×𝑵 

𝒇 𝒙 = 𝒇𝝐(𝑾,𝑯) 
𝑭𝟏 𝒙𝟏|𝒙 = 𝒖𝟏 𝑾,𝑾 𝒍 𝑯(𝒍)  𝑭𝟐 𝒙𝟐|𝒙 =  𝒖𝟐 𝑯,𝑯 𝒍 𝑾 𝒍+𝟏  

√ 
√ 

𝒇𝟏 𝑾 𝑯(𝒍)) = 𝒇𝝐 𝑾,𝑯(𝒍)  
 𝒇𝟐 𝑯 𝑾 𝒍+𝟏 ) = 𝒇𝝐(𝑾 𝒍+𝟏 ,𝑯) 
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 M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block successive minimization methods for nonsmooth 

optimization. SIAM Journal on Optimization , 23(2):1126--1153, 2013.  



𝑢1′ 𝑾;𝑾 −𝑾 𝑾 ,𝑯 |𝑾= 𝑾 = 𝑓1′(𝑾;𝑾 −𝑾|𝑯 ) 𝑢2′ 𝑯;𝑯 − 𝑯 𝑾 ,𝑯 |𝑯= 𝑯 = 𝑓2′(𝑯;𝑯 −𝑯|𝑾 ) 
𝑢1 and 𝑢2 are both differentiable (P3)  

(P4)  

√ 
√ 

√ (P5)  𝑤𝑚𝑘 > 0, ℎ𝑘𝑖 ≥ 0 
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Australian Open 

Roland Garros 

Wimbledon 

US Open 

Indian Wells Masters 
Madrid Open 
Miami Open 
Monte-Carlo Masters 
Pairs Masters 
Italian Open 
Canada Masters 
Cincinnati Masters 
Shanghai Masters 
ATP World Tour Finals 

M = 14 Top 20 players who both 

Rafael Nadal 

Novak Djokovic 
David Ferrer 

Tomas Berdych 

Roger Federer 

Andy Murray 

Fernando Verdasco 

Philipp Kohlschreiber 

Richard Gasquet 

Gilles Simon 

Stan Wawrinka 

Jo-Wilfried Tsonga 

Marin Cilic 

Feliciano Lopez 

John Isner 

Nicolas Almagro 

Juan Martin del Potro 

Gael Monfils 

Milos Raonic 

Kei Nishikori 

N = 20 

Have the highest number of participation  
in the 14 tournaments from 2008-2017  

Have the highest total number of matches  
played from 2008-2017 ∩ 

Tournaments that yield the most ranking points 

The four Grand Slams 
ATP World Tour Finals  
Nine ATP Masters 1000 
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Name 
Rafael  

Nadal 

Novak  

Djokovic 

David  

Ferrer 

Tomas  

Berdych 

Roger  

Federer 

Andy  

Murray 

Fernando  

Verdasco 

Philipp  

Kohlschreiber 

Richard  

Gasquet 

Rafael Nadal 0 0 0 1 3 1 1 2 0 

Novak Djokovic 1 0 3 2 3 5 2 0 0 

David Ferrer 1 0 0 0 0 0 0 0 1 

Tomas Berdych 1 0 0 0 0 0 1 1 1 

Roger Federer 1 1 0 4 0 2 0 0 0 

Andy Murray 1 0 2 1 1 0 1 0 0 

Fernando Verdasco 1 0 0 0 0 1 0 0 0 

Philipp Kohlschreiber 0 0 0 0 0 0 0 0 0 

Richard Gasquet 0 0 0 0 0 0 0 0 0 

Non-zero 

Zeros on the diagonal 

(𝑏𝑖𝑖(𝑚) = 0) 
True zeros 

(𝑏𝑖𝑗(𝑚) = 0, 𝑏𝑗𝑖(𝑚) > 0) Missing data 

(𝑏𝑖𝑗(𝑚) = 𝑏𝑗𝑖(𝑚) = 0) 

36 



1. BTL-NMF Algorithm 
• Majorization-Minimization Algorithm 

• Resolution of Numerical Problems 

• Normalization 

• Convergence Analysis 

 

2. Experiments Using Real Life Dataset 
• Dataset Information 

• Running of Algorithm 

• Men Players 

• Women Players 

 

3. Comparison with Mixture BTL 
• Qualitative Comparison 

• Prediction Task & Result Comparison 

 

37 



Stopping condition:  

< 𝟏𝟎−𝟔 
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① 

② 

③ 

④ 

← 

← 

← 
← 
← 

40 

Learned W Dictionary Matrix for men 



Clay player 
Grass player 

Clay player 

Non-clay player 

Hard Court player 

non-clay clay 

41 
Learned Transpose H Coefficient Matrix for men 



← 

← 

← 
← 
← 

① 

② 

③ 

④ 

⑤ 
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𝚲 =   𝐖𝐇 
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Chronological Order  
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45 Learned Transpose H Coefficient Matrix for women 
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BTL-NMF 

Mixture BTL 

K 

N 

H 

M W 

K 

K 

N 

H 

1 

K 

Assignments 
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Different number of parameters 



EM algorithm 

Hard Assignments 

Soft posterior Assignments E-STEP 

M-STEP 

Initialization:  𝑃 0 𝐾 = 1/𝐾, randomize  𝜆𝑘𝑖(0) nonnegative 
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Mixture BTL solution  Unstable 
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S = subset of the collected dataset D 
 

|S| ≈ 10% * |non-zero D| 
Training on 𝐷′ = 𝐷\𝑆 Learned (WH) matrix 

In S, If Pr(i beats j in tournament m) > 0.5 

i is predicted to beat j in that match 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  # 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠|𝑆|  
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𝑆𝑘 = all the matches played in year k 
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1. Larger and longer dataset: Greatest Players of all time 

2. Epsilon : Bayesian Interpretation? 

53 

For future details, please see the full paper at 
https://arxiv.org/abs/1903.06500 
 
Datasets and Code: 
https://github.com/XiaRui1996/btl-nmf  
 
Will be presented at ECML/PKDD next week 

Thank you! 

Future Plans 

https://arxiv.org/abs/1903.06500
https://arxiv.org/abs/1903.06500
https://github.com/XiaRui1996/btl-nmf
https://github.com/XiaRui1996/btl-nmf
https://github.com/XiaRui1996/btl-nmf

