

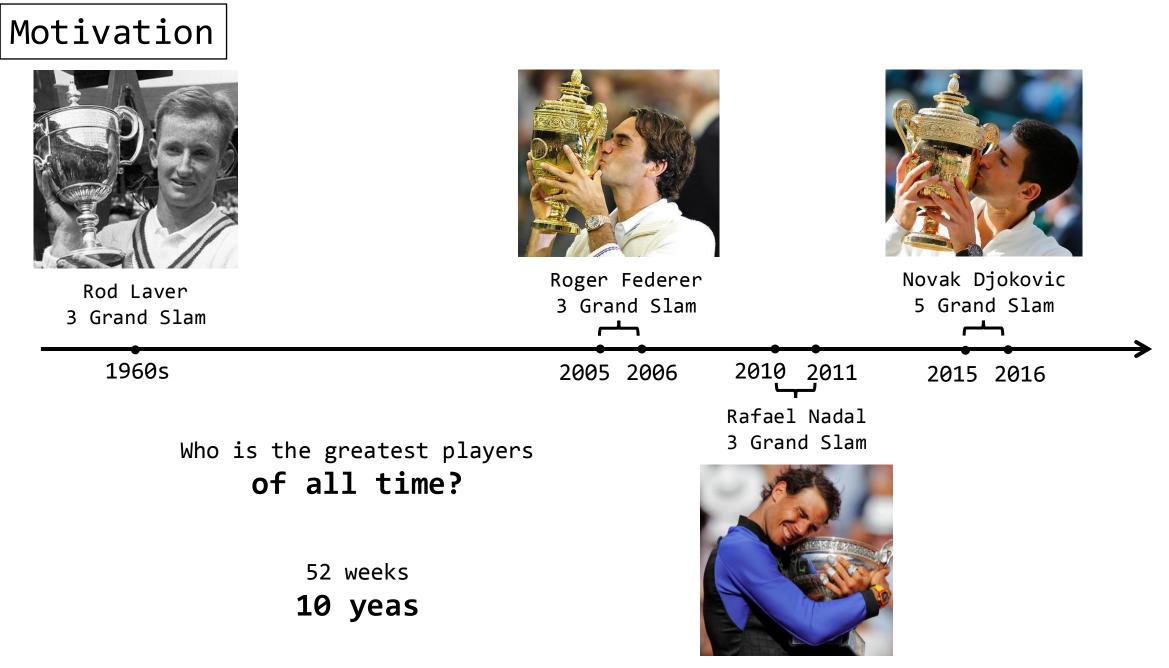
A Ranking Model Motivated by NMF with Applications to Tennis Tournaments

Vincent Tan National University of Singapore

LRMA 2019 Mons, Belgium 13 Sept 2019

Rui Xia NUS, Maths

Louis Filstroff IRIT, Toulouse Cédric Févotte IRIT, Toulouse



Latent Variables: Surface Type?

Wimbledon Grass Outdoors

French Open Clay Outdoors

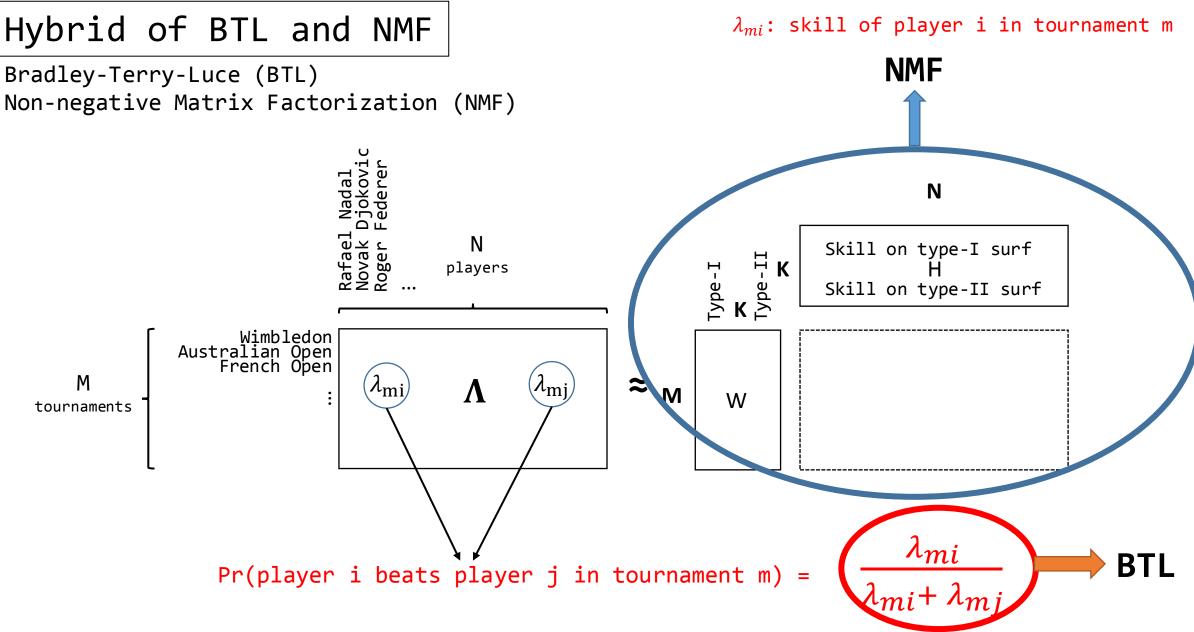
Australian Open Hard Outdoors

US Open Hard Outdoors

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

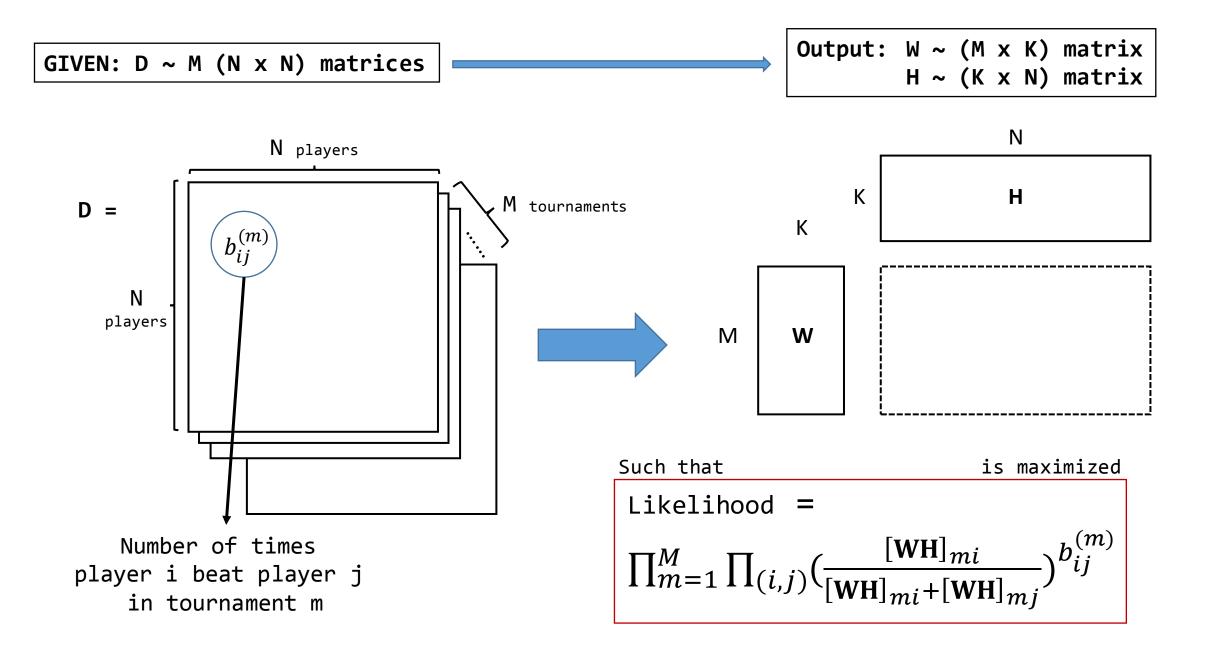
2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison



R. Bradley and M. Terry. Rank analysis of incomplete block designs I: The method of paired comparisons. Biometrika, 35:324--345, 1952. R. Luce. Individual choice behavior: A theoretical analysis. Wiley, 1959.

D. D. Lee and H. S. Seung. Learning the parts of objects with nonnegative matrix factorization. Nature, 401:788-791, 1999.



Task: Minimize the negative log-likelihood

Find
$$\begin{aligned} & \operatorname{argmin}_{W,H \ge 0} \left(-\log P(\mathbf{W}, \mathbf{H} | \mathcal{D}) \right) \\ & = \operatorname{argmin}_{W,H \ge 0} \left(\sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_m} b_{ij}^{(m)} \left[-\log \left([\mathbf{W}\mathbf{H}]_{mi} \right) + \log \left([\mathbf{W}\mathbf{H}]_{mi} + [\mathbf{W}\mathbf{H}]_{mj} \right) \right] \right) \end{aligned}$$

Convex? No!

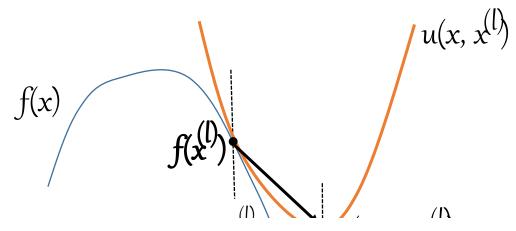
Objective function not guaranteed to decrease using standard gradient-based algorithms

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

Majorization-Minimization algorithm



1. u(x, x) = f(x) for all $x \in \mathcal{X}$; 2. $u(x, x^{(l)}) \ge f(x)$ for all $(x, x^{(l)}) \in \mathcal{X}^2$.

9

3. $u'(x, x^{(l)}; d)|_{x=x^{(l)}} = f'(x^{(l)}; d)$ for all d such that $x^{(l)} + d \in \mathcal{X}$, where

$$u'(x, x^{(l)}; d) = \frac{\partial}{\partial x} u(x, x^{(l)}; d), \text{ and } f'(x; d) = \frac{\partial}{\partial x} f(x; d)$$

4. $u(x, x^{(l)})$ is (jointly) continuous in $(x, x^{(l)})$. $x^{(l+1)} = x_{min}$ $x^{(l)} \xrightarrow{l \to \infty}$ Stationary point of f(x)

min $f(\mathbf{W}, \mathbf{H}|\mathcal{D})$

$$\mathbf{W}^{(l+1)} \longleftarrow u_1(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)})$$
$$\mathbf{H}^{(l+1)} \longleftarrow u_2(\mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)})$$

$$\sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log\left([\mathbf{WH}]_{mi} \right) + \log\left([\mathbf{WH}]_{mi} + [\mathbf{WH}]_{mj} \right) \right]$$
$$- \sum_{(i,j)} b_{ij} \left[\log \theta_{i} - \log\left(\theta_{i} + \theta_{j} \right) \right]$$
By Taylor's Theorem $\longrightarrow \log y \leq \log x + \frac{1}{x}(y - x).$
$$u(\theta, \theta^{(l)}) = -\sum_{i,j} b_{ij} \left[\log \theta_{i} - \log(\theta_{i}^{(l)} + \theta_{j}^{(l)}) - \frac{\theta_{i} + \theta_{j}}{\theta_{i}^{(l)} + \theta_{j}^{(l)}} + 1 \right] \longrightarrow \theta_{i}^{(l+1)} \leftarrow \frac{\sum_{j \neq i} b_{ij}}{\sum_{j \neq i} (b_{ij} + b_{ji})/(\theta_{i}^{(l)} + \theta_{j}^{(l)})}$$

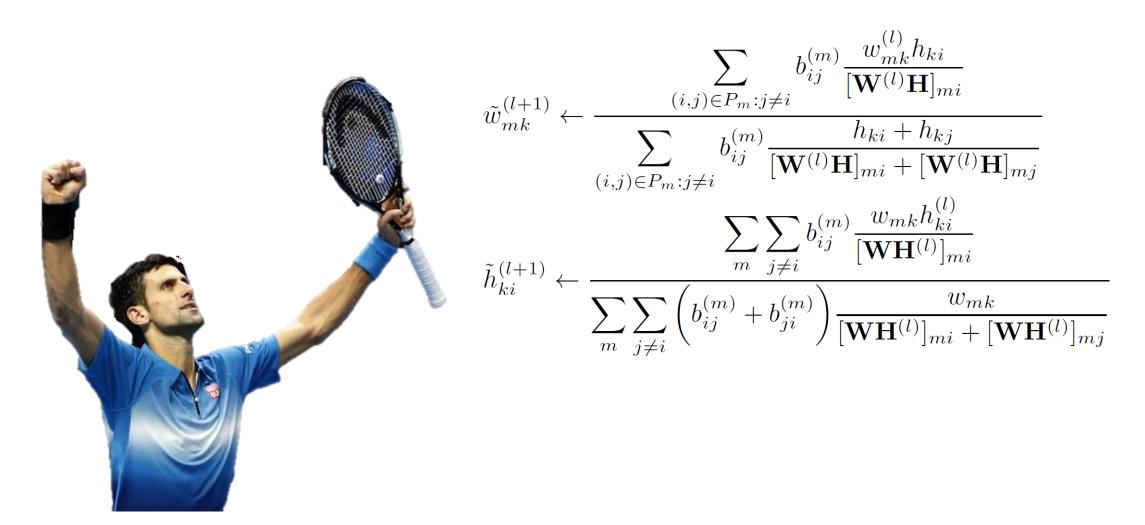
$$\begin{split} \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log\left([\mathbf{W}\mathbf{H}]_{mi} \right) + \log\left([\mathbf{W}\mathbf{H}]_{mi} + [\mathbf{W}\mathbf{H}]_{mj} \right) \right] \\ & \clubsuit \\ \widetilde{u}_{1} \left(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)} \right) = \sum_{m=1}^{M} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\log\left([\mathbf{W}\mathbf{H}]_{mi} \right) \\ & + \log\left([\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mj} \right) + \frac{[\mathbf{W}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}\mathbf{H}^{(l)}]_{mj}}{[\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)}\mathbf{H}^{(l)}]_{mj}} - 1 \right] \\ & \mathsf{By Jensen's Inequality} \\ & - \log[\sum_{k} w_{mk}h_{ki}] = -\log\left[\sum_{k} \lambda_{mki} \frac{w_{mk}h_{ki}}{\lambda_{mki}}\right] \leq -\sum_{k} \lambda_{mki} \log\left[\frac{w_{mk}h_{ki}}{\lambda_{mki}}\right] = -\sum_{k} \frac{w_{mk}^{(l)}h_{ki}}{[\mathbf{W}^{(l)}\mathbf{H}]_{mi}} \log\left[\frac{w_{mk}h_{ki}}{w_{mk}^{(l)}h_{ki}} [\mathbf{W}^{(l)}\mathbf{H}]_{mi}\right] \\ & - \left(\mathsf{I}\mathbb{E}(X)\right) \leqslant \mathbb{E}(f(X)) \end{split}$$

$$\begin{split} u_{2}(\mathbf{H}, \mathbf{H}^{(l)} | \mathbf{W}^{(l+1)}) \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \bigg[-\sum_{k} \frac{w_{mk}^{(l+1)} h_{ki}^{(l)}}{[\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi}} \log \bigg(\frac{h_{ki}}{h_{ki}^{(l)}} [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} \bigg) \\ &+ \log \bigg([\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mj} \bigg) \\ &+ \frac{[\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mj}}{[\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l+1)} \mathbf{H}^{(l)}]_{mj}} - 1 \bigg] \end{split}$$

$$\begin{split} u_{1}(\mathbf{W}, \mathbf{W}^{(l)} | \mathbf{H}^{(l)}) \\ &= \sum_{m} \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left[-\sum_{k} \frac{w_{mk}^{(l)} h_{ki}^{(l)}}{[\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi}} \log \left(\frac{w_{mk}}{w_{mk}^{(l)}} [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi} \right) \\ &+ \log \left([\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mj} \right) + \frac{[\mathbf{W} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W} \mathbf{H}^{(l)}]_{mj}}{[\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mi} + [\mathbf{W}^{(l)} \mathbf{H}^{(l)}]_{mj}} - 1 \right] \end{split}$$

Auxiliary Functions

Updates for MM algorithm

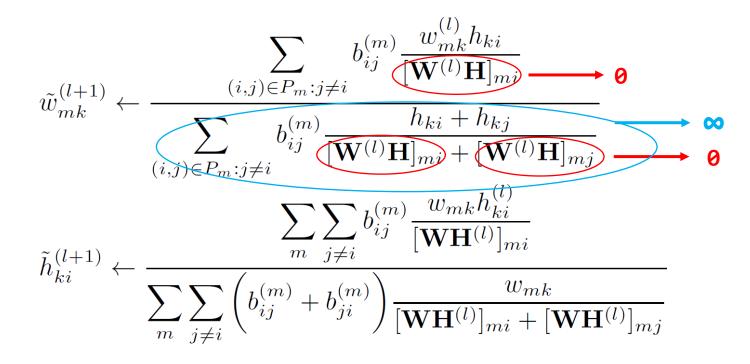


- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

May Divide by 0 or small numbers



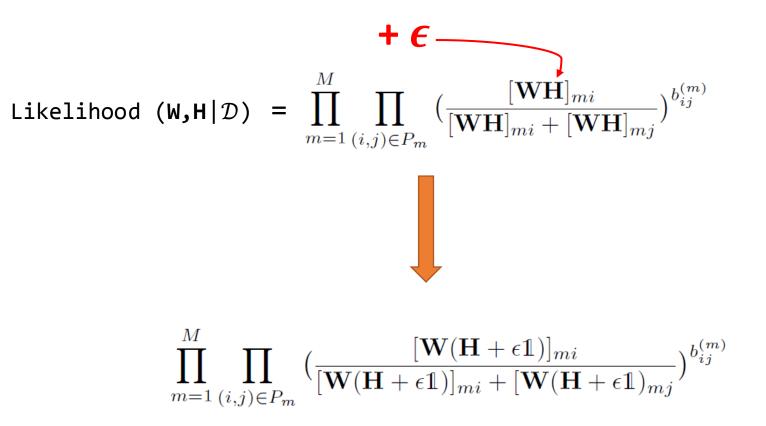
Desired Properties

Property 1: Likelihood is always non-decreasing (Objective Function should be non-increasing)

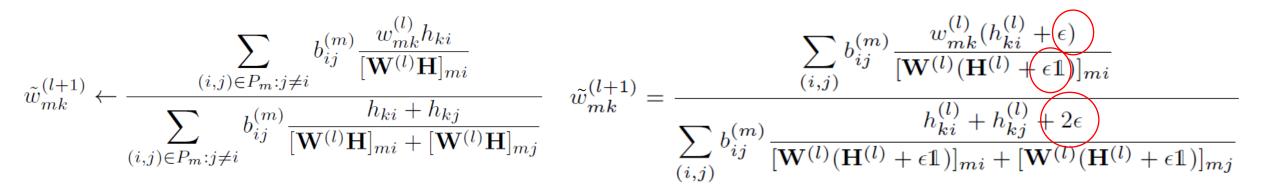
Property 2: W,H are non-negative

Property 3: No division by zero/Numerical problems

Proposed Solution



$$\int_{m=1}^{M} \sum_{(i,j)\in P_m} b_{ij}^{(m)} \left[-\log(\sum_k w_{mk}h_{ki}) + \log(\sum_k w_{mk}h_{ki}) + \sum_k w_{mk}h_{kj}) \right]$$
$$f_{\epsilon}(\mathbf{W}, \mathbf{H}) := \sum_{m=1}^{M} \sum_{(i,j)\in P_m} b_{ij}^{(m)} \left[-\log(\sum_k w_{mk}(h_{ki} + \epsilon)) + \log(\sum_k w_{mk}(h_{ki} + \epsilon)) + \sum_k w_{mk}(h_{kj} + \epsilon)) \right]$$



$$\tilde{h}_{ki}^{(l+1)} \leftarrow \frac{\sum_{m} \sum_{j \neq i} b_{ij}^{(m)} \frac{w_{mk} h_{ki}^{(l)}}{[\mathbf{W}\mathbf{H}^{(l)}]_{mi}}}{\sum_{m} \sum_{j \neq i} \left(b_{ij}^{(m)} + b_{ji}^{(m)} \right) \frac{w_{mk}}{[\mathbf{W}\mathbf{H}^{(l)}]_{mi} + [\mathbf{W}\mathbf{H}^{(l)}]_{mj}}}$$

$$\tilde{h}_{ki}^{(l+1)} = \frac{\sum_{m} \sum_{j \neq i} b_{ij}^{(m)} \frac{w_{mk}^{(l+1)} (h_{ki}^{(l)} + \epsilon)}{[\mathbf{W}^{(l+1)} (\mathbf{H}^{(l)} + \epsilon\mathbf{1})]_{mi}}}{\sum_{m} \sum_{j \neq i} (b_{ij}^{(m)} + b_{ji}^{(m)}) \frac{w_{mk}^{(l+1)}}{[\mathbf{W}^{(l+1)} (\mathbf{H}^{(l)} + \epsilon\mathbf{1})]_{mi}}} - \epsilon}$$

$$\tilde{h}_{ki}^{(l+1)} \leftarrow \max\left\{\tilde{h}_{ki}^{(l+1)}, 0\right\}$$

Desired Properties

Property 1: Likelihood is always non-decreasing (Objective Function should be non-increasing)

```
Property 2: W,H are non-negative
```

Property 3: No division by zero

How to make sure the likelihood is non-decreasing or the negative log-likelihood is non-increasing?

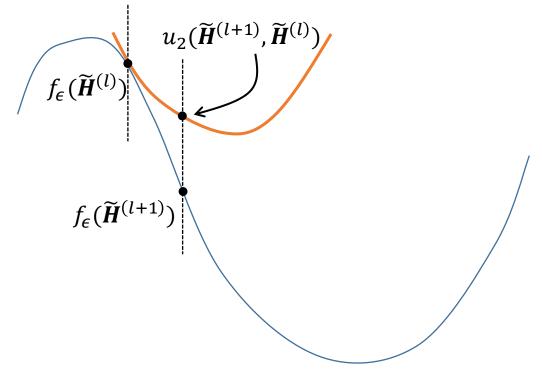
Suppose
$$\tilde{h}_{ki}^{(l+1)} = 0$$
 and $\tilde{h}_{k',i'}^{(l+1)} = \tilde{h}_{k',i'}^{(l)}$ for all $(k',i') \neq (k,i)$.
Want to show:

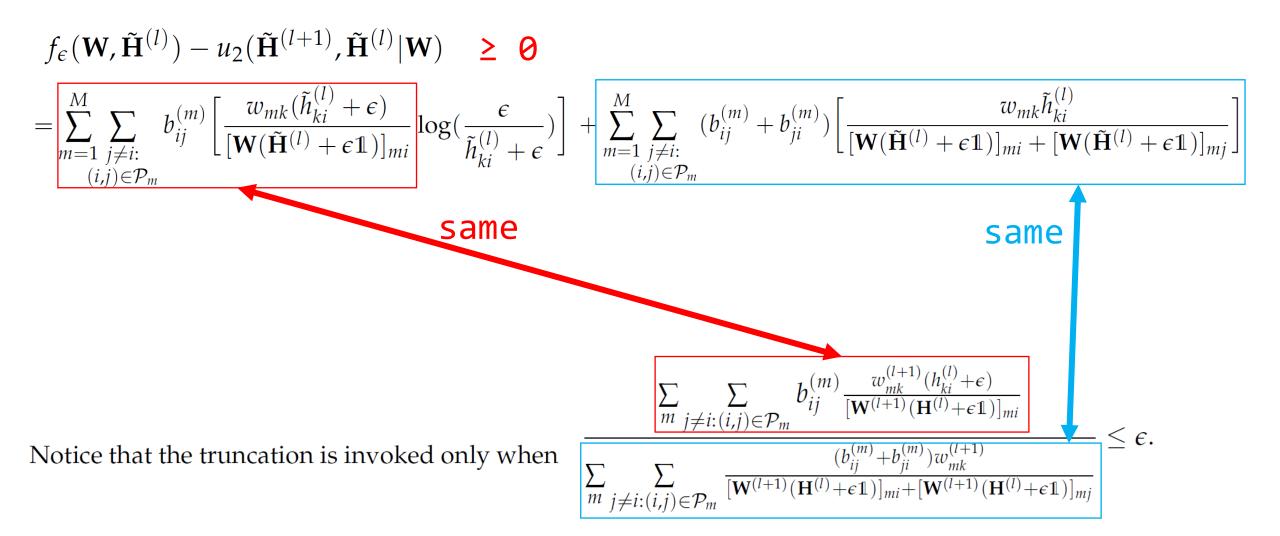
$$f_{\epsilon}(\boldsymbol{W}, \widetilde{\boldsymbol{H}}^{(l+1)}) \leq f_{\epsilon}(\boldsymbol{W}, \widetilde{\boldsymbol{H}}^{(l)})$$

Always satisfied by the property of auxiliary function: $f_{\epsilon}(W, \widetilde{H}^{(l+1)}) \leq u_{2}(\widetilde{H}^{(l+1)}, \widetilde{H}^{(l)}|W)$

Suffices to show:

 $u_2(\widetilde{H}^{(l+1)}, \widetilde{H}^{(l)}|W) \leq f_{\epsilon}(W, \widetilde{H}^{(l)})$





$$\begin{aligned} f_{\epsilon}(\mathbf{W}, \tilde{\mathbf{H}}^{(l)}) &- u_{2}(\tilde{\mathbf{H}}^{(l+1)}, \tilde{\mathbf{H}}^{(l)} | \mathbf{W}) \\ \geq &- \log\left(\frac{h_{ki}^{(l)} + \epsilon}{\epsilon}\right) \cdot \epsilon \cdot \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}\tilde{h}_{ki}^{(l)}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mj}} \right] \\ &+ \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mj}}\right] \\ &= \sum_{m=1}^{M} \sum_{\substack{j \neq i: \\ (i,j) \in \mathcal{P}_{m}}} (b_{ij}^{(m)} + b_{ji}^{(m)}) \left[\frac{w_{mk}}{[\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mi} + [\mathbf{W}(\tilde{\mathbf{H}}^{(l)} + \epsilon \mathbf{1})]_{mj}} \left(-\epsilon \log(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}) + \tilde{h}_{ki}^{(l)}\right)\right] \\ &\geq 0 \end{aligned}$$

$$\begin{aligned} &-\epsilon \log(\frac{\tilde{h}_{ki}^{(l)} + \epsilon}{\epsilon}) + \tilde{h}_{ki}^{(l)} \ge 0 \\ &\Rightarrow \frac{\tilde{h}_{ki}^{(l)}}{\epsilon} \ge \log(\frac{\tilde{h}_{ki}^{(l)}}{\epsilon} + 1) \\ &\Rightarrow \exp(\frac{\tilde{h}_{ki}^{(l)}}{\epsilon}) \ge \frac{\tilde{h}_{ki}^{(l)}}{\epsilon} + 1 \end{aligned} \qquad e^{x} \ge x + 1, \forall x \ge 0 \end{aligned}$$

Property 1: likelihood is always non-decreasing V

Property 2: W,H are non-negative V

Property 3: No division by zero 🗸

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

Pr(i beats j in tournament m) =

 $\sum_{k} \tilde{w}_{mk}(\tilde{h}_{ki} + \epsilon)$ $\sum_{k} \tilde{w}_{mk}(h_{kj} + \epsilon) + \sum_{k} \tilde{w}_{mk}(h_{kj} + \epsilon)$

Row Normalization of W and Global Normalization of H: Keep likelihood unchanged $\sum_k w_{mk} = 1, \sum_{k,i} h_{ki} = 1$

 α

Column Normalization of W and Global Normalization of H: Keep likelihood unchanged $\sum_m w_{mk} = 1, \sum_{k,i} h_{ki} = 1$

 $\sum_{m} \sum_{i} [\mathbf{\Lambda}]_{mi} = \sum_{m} \sum_{i} \sum_{k} w_{mk} h_{ki} = \sum_{i} \sum_{k} h_{ki} \sum_{m} w_{mk} = \sum_{k,i} h_{ki} = 1$

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis
- 2. Experiments Using Real Life Dataset
 - Dataset Information
 - Running of Algorithm
 - Men Players
 - Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

$$x^{(l)} \xrightarrow{l \longrightarrow \infty}$$
 Stationary point of $f(x)$

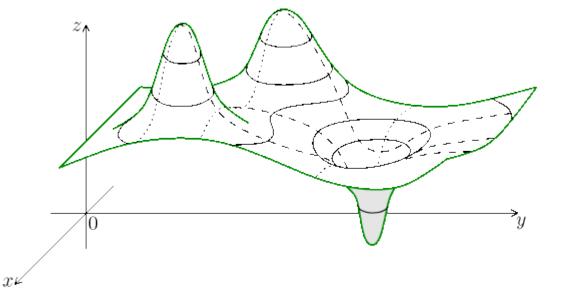
Directional Derivative:

$$f'(x;d) = \lim_{\lambda \to 0} \frac{f(x+\lambda d) - f(x)}{\lambda}$$

31

Stationary Point $(\overline{W}, \overline{H})$ of:

$$\min_{\boldsymbol{W}\in\boldsymbol{R}_{++}^{M\times K}, \boldsymbol{H}\in\boldsymbol{R}_{++}^{K\times N}} f_{\boldsymbol{\epsilon}} (\boldsymbol{W}, \boldsymbol{H})$$



If for $f_1(W|\overline{H}) = f_{\epsilon}(W,\overline{H})$, $f_2(H|\overline{W}) = f_{\epsilon}(\overline{W},H)$:

$$f_1'(\overline{W}; W - \overline{W} | \overline{H}) \ge 0, \qquad \forall W \in \mathbb{R}_{++}^{M \times K}$$

$$f_2'(\overline{H}; H - \overline{H} | \overline{W}) \ge 0, \qquad \forall H \in \mathbb{R}_{++}^{K \times N}$$

Convergence analysis of block successive minimization methods

Given
$$f(x)$$
 to be minimized on domain $\chi = \prod_{i=1}^{n} \chi_i$ $n = 2, \quad \chi = R_{++}^{M \times K} \times R_{++}^{K \times N}$

(P1)
$$F_i(\tilde{x}_i|\tilde{x}) = f(\tilde{x})$$
, for any $\tilde{x} \in \chi$

(P2)
$$F_i(x_i|\tilde{x}) \le f(\tilde{x}_1, \dots, x_i, \dots, \tilde{x}_n)$$
, for any $(x_i, \tilde{x}) \in \chi_i \times \chi$

(P3) $F_i(\cdot | \cdot)$ is differentiable on $int \chi_i \times int \chi_i$ there exits a function $g(\cdot | \tilde{x})$: $\nabla F_i(\cdot | \tilde{x}) = g(\cdot / \tilde{x}_i | \tilde{x})$

(P4) Define
$$f_i(\cdot | \tilde{x}) : x_i \mapsto f(\tilde{x}_1, \dots, x_i, \dots, \tilde{x}_n)$$
, for any $(x_i, \tilde{x}) \in \chi_i \times \chi$
Then for any $\hat{x} \in \chi_i$, $F'_i(x_i; \hat{x}_i - x_i | \tilde{x}_i)|_{x_i = \tilde{x}_i} = f'_i(x_i; \hat{x}_i - x_i | \tilde{x}_i)|_{x_i = \tilde{x}_i}$

(P5)
$$F_i(\cdot | \tilde{x})$$
 is strictly convex on χ_i , for any $\tilde{x} \in \chi$

M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM Journal on Optimization , 23(2):1126--1153, 2013.

 $f(x) = f_{\epsilon}(W, H)$

 $f_1(W|H^{(l)}) = f_{\epsilon}(W, H^{(l)})$

 $f_2(H|W^{(l+1)}) = f_{\epsilon}(W^{(l+1)}, H)$

 $F_{1}(x_{1}|\tilde{x}) = u_{1}(W, W^{(l)}|H^{(l)})$ $F_{2}(x_{2}|\tilde{x}) = u_{2}(H, H^{(l)}|W^{(l+1)})$ $\bigvee (P3) \qquad u_{1} \text{ and } u_{2} \text{ are both differentiable}$ $\bigvee (P4) \qquad u_{1}'(W; \widehat{W} - W | \widetilde{W}, \widetilde{H})|_{W = \widetilde{W}} = f_{1}'(W; \widehat{W} - W | \widetilde{H})$ $u_{2}'(H; \widehat{H} - H | \widetilde{W}, \widetilde{H})|_{H = \widetilde{H}} = f_{2}'(H; \widehat{H} - H | \widetilde{W})$ $\bigvee (P5) \qquad \frac{\partial^{2}}{\partial w_{mk}^{2}} u_{1}(W, W^{(l)} | H^{(l)}) = \sum_{(i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left(\frac{w_{mk}^{(l)}(h_{ki}^{(l)} + \epsilon)}{[W^{(l)}(H^{(l)} + \epsilon\mathbb{1})]_{mi}} \frac{1}{w_{mk}^{2}} \right)$ $\frac{\partial^{2}}{\partial h_{ki}^{2}} u_{2}(H, W^{(l+1)} | H^{(l)}) = \sum_{m} \sum_{j \neq i: (i,j) \in \mathcal{P}_{m}} b_{ij}^{(m)} \left(\frac{w_{mk}^{(l+1)}(h_{ki}^{(l)} + \epsilon)}{[W^{(l+1)}(H^{(l)} + \epsilon\mathbb{1})]_{mi}} \frac{1}{(h_{ki} + \epsilon)^{2}} \right)$ $w_{mk} > 0, h_{ki} \ge 0$

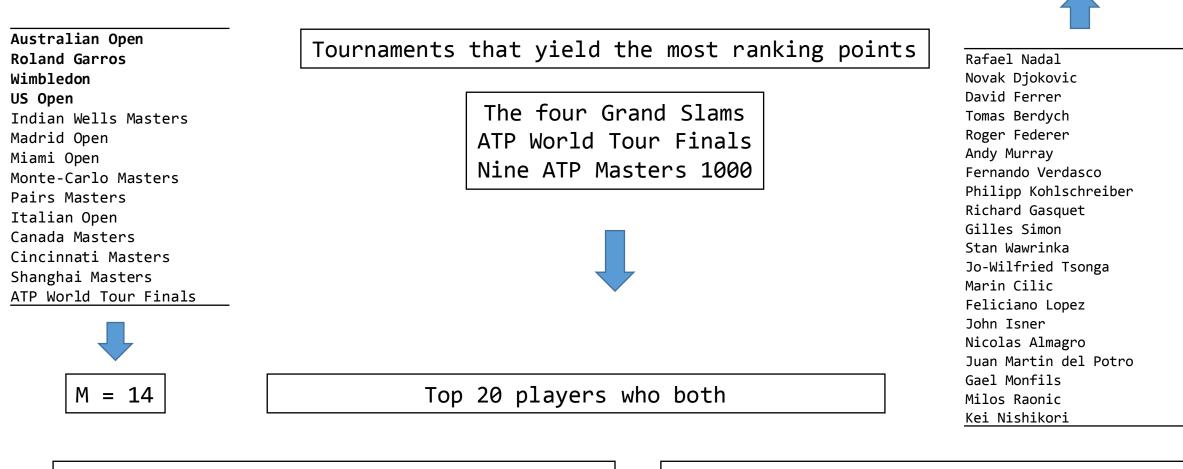
Theorem 1. If **W** and **H** are initialized to have positive entries (i.e., $\mathbf{W}^{(0)} \in \mathbb{R}_{++}^{M \times K} = (0, \infty)^{M \times K}$ and $\mathbf{H}^{(0)} \in \mathbb{R}_{++}^{K \times N}$) and $\epsilon > 0$, then every limit point of $\{(\mathbf{W}^{(l)}, \mathbf{H}^{(l)})\}_{l=1}^{\infty}$ generated by Algorithm 1 is a stationary point of $\mathbf{W} \in \mathbb{R}_{+}^{M \times K}, \mathbf{H} \in \mathbb{R}_{+}^{K \times N}$ $f_{\epsilon}(\mathbf{W}, \mathbf{H})$

R. Zhao and V. Y. F. Tan, "A Unified Convergence Analysis of the Multiplicative Update Algorithm for Regularized NMF", IEEE Transactions on Signal Processing, Vol. 66, No. 1, Pages 129 – 138, Jan 2018

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

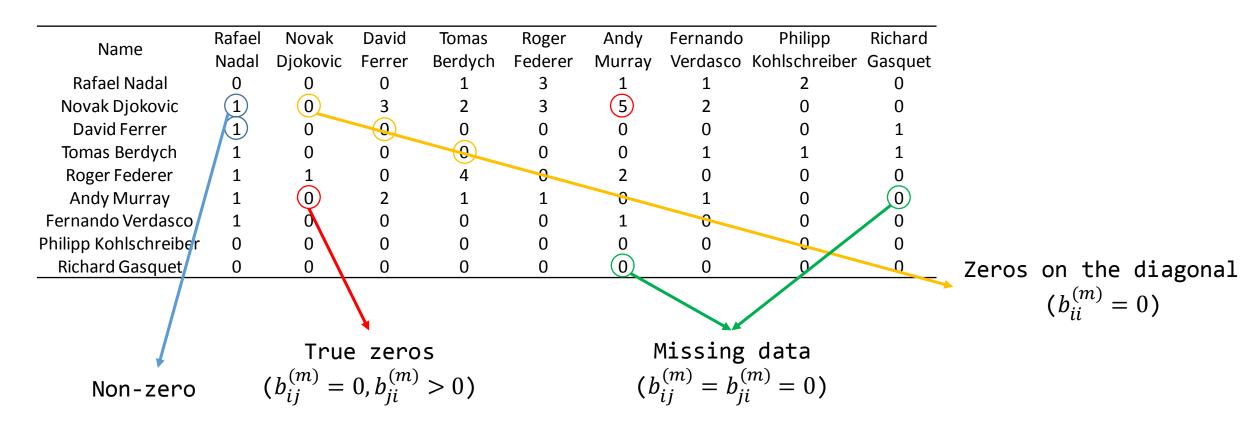
2. Experiments Using Real Life Dataset

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison



Have the highest number of participation in the 14 tournaments from 2008-2017

N = 20



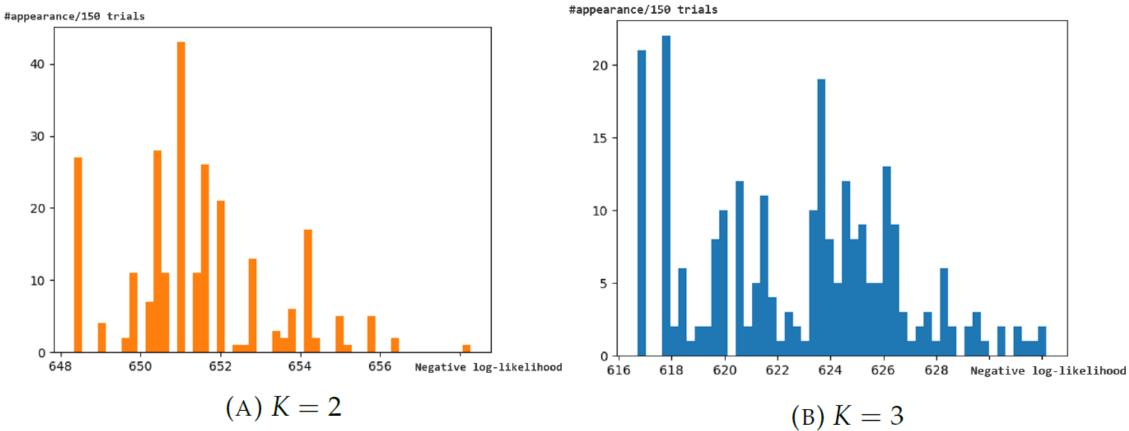
	Male		Female	
Total Entries	$14 \times 20 \times 20 = 5600$		$16 \times 20 \times 20 = 6400$	
	Number	Percentage	Number	Percentage
Non-zero	1024	18.30%	788	12.31%
Zeros on the diagonal	280	5.00%	320	5.00%
Missing data	3478	62.10%	4598	71.84%
True zeros	818	14.60%	694	10.85%

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

Stopping condition:

$$\operatorname{diff} \leftarrow \max\left\{ \max_{m,k} \left| w_{mk}^{(l+1)} - w_{mk}^{(l)} \right|, \max_{k,i} \left| h_{ki}^{(l+1)} - h_{ki}^{(l)} \right| \right\} < 10^{-6}$$



- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

Learned W Dictionary Matrix for men

Tournaments	Row Normalization			Column Normalization				
Australian Open	5.77E-01	4.23E-01		1.15E-01	7.66E-02			
French Open	3.44E-01	6.56E-01		8.66E-02	1.50E-01			
Wimbledon	6.43E-01	3.57E-01		6.73E-02	3.38E-02			
US Open	5.07E-01	4.93E-01		4.62E-02	4.06E-02			
Indian Wells Masters	6.52E-01	3.48E-01		1.34E-01	6.50E-02			
Madrid Open	3.02E-01	6.98E-01		6.43E-02	1.34E-01	3		
Miami Open	5.27E-01	4.73E-01		4.95E-02	4.02E-02			
Monte-Carlo Masters	1.68E-01	8.32E-01		2.24E-02	1.01E-01	4		
Paris Masters	1.68E-01	8.32E-01		1.29E-02	5.76E-02			
Italian Open	0.00E-00	1.00E-00		1.82E-104	1.36E-01	2		
Canadian Open	1.00E-00	0.00E-00		1.28E-01	1.78E-152			
Cincinnati Masters	5.23E-01	4.77E-01		1.13E-01	9.36E-02			
Shanghai Masters	7.16E-01	2.84E-01		1.13E-01	4.07E-02			
The ATP Finals	5.72E-01	4.28E-01		4.59E-02	3.11E-02			

		non-clay	clay	
	Players	matri	ix \mathbf{H}^T	Total Matches
Hard Court player>	Novak Djokovic	1.20E-01	9.98E-02	283
Clay player ———>	Rafael Nadal	2.48E-02	1.55E-01	241
Grass player ———>	Roger Federer	1.15E-01	2.34E-02	229
Non-clay player>	Andy Murray	7.57E-02	8.43E-03	209
	Tomas Berdych	0.00E-00	3.02E-02	154
	David Ferrer	6.26E-40	3.27E-02	147
Clay player ———>	Stan Wawrinka	2.93E-55	4.08E-02	141
	Jo-Wilfried Tsonga	3.36E-02	2.71E-03	121
	Richard Gasquet	5.49E-03	1.41E-02	102
	Juan Martin del Potro	2.90E-02	1.43E-02	101
	Marin Cilic	2.12E-02	0.00E-00	100
	Fernando Verdasco	1.36E-02	8.79E-03	96
	Kei Nishikori	7.07E-03	2.54E-02	94
	Gilles Simon	1.32E-02	4.59E-03	83
	Milos Raonic	1.45E-02	7.25E-03	78
	Philipp Kohlschreiber	2.18E-06	5.35E-03	76
	John Isner	2.70E-03	1.43E-02	78
	Feliciano Lopez	1.43E-02	3.31E-03	75
	Gael Monfils	3.86E-21	1.33E-02	70
	Nicolas Almagro	6.48E-03	6.33E-06	60

Learned Transpose H Coefficient Matrix for men

$\Lambda = WH$

Tournament	Novak Djokovic	Rafael Nadal	Roger Federer	Andy Murray	Stan Wawrinka
Australian Open	2.16E-02	1.54E-02	1.47E-02	9.13E-03	3.34E-03
French Open	1.39E-02	1.43E-02	7.12E-03	4.11E-03	3.48E-03 5
Wimbledon	2.63E-02	1.66E-02	1.91E-02	1.20E-02	3.39E-03
US Open	1.17E-02	9.42E-03	7.38E-03	4.51E-03	2.13E-03
Indian Wells Masters	2.29E-02	1.42E-02	1.68E-02	1.06E-02	2.88E-03
Madrid Open	1.38E-02	1.51E-02	6.63E-03	3.75E-03	3.72E-03 4
Miami Open	2.95E-02	2.30E-02	1.90E-02	1.17E-02	5.15E-03 (1
Monte-Carlo Masters	1.19E-02	1.53E-02	4.46E-03	2.27E-03	3.92E-03 (3
Paris Masters	7.29E-03	9.37E-03	2.73E-03	1.39E-03	2.40E-03
Italian Open	1.19E-02	1.84E-02	2.78E-03	1.00E-03	4.87E-03 2
Canadian Open	1.16E-02	2.40E-03	1.11E-02	7.32E-03	2.42E-51
Cincinnati Masters	1.82E-02	1.43E-02	1.17E-02	7.17E-03	3.20E-03
Shanghai Masters	8.12E-03	4.38E-03	6.29E-03	4.01E-03	8.24E-04
The ATP Finals	1.13E-02	8.13E-03	7.63E-03	4.74E-03	1.77E-03

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison
 - Prediction Task & Result Comparison

Chronological Order

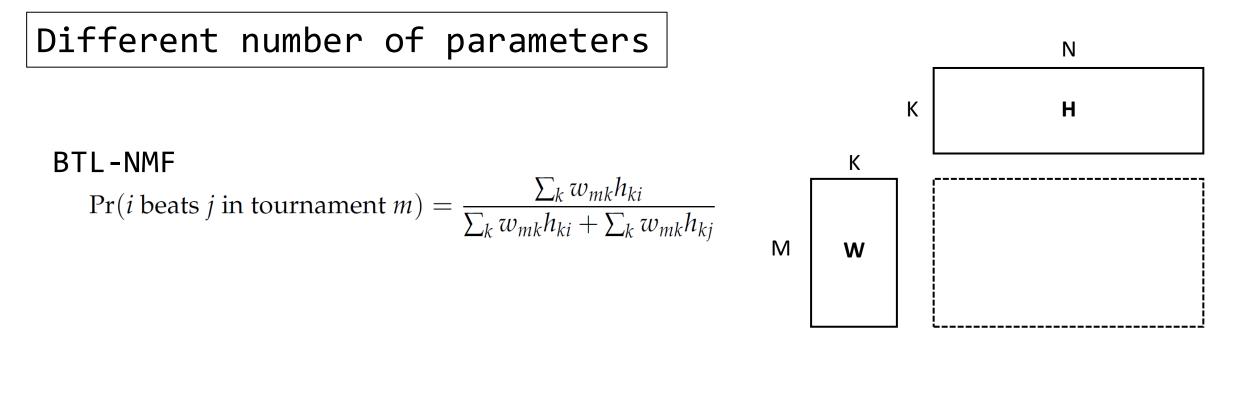
Tournaments	Row Norn	nalization	Column No	rmalization
Australian Open	1.00E-00	3.74E-26	1.28E-01	3.58E-23
Qatar Open	6.05E-01	3.95E-01	1.05E-01	4.94E-02
Dubai Tennis Championships	1.00E-00	1.42E-43	9.47E-02	3.96E-39
Indian Wells Open	5.64E-01	4.36E-01	8.12E-02	4.51E-02
Miami Open	5.86E-01	4.14E-01	7.47E-02	3.79E-02
Madrid Open	5.02E-01	4.98E-01	6.02E-02	4.29E-02
Italian Open	3.61E-01	6.39E-01	5.22E-02	6.63E-02
French Open	1.84E-01	8.16E-01	2.85E-02	9.04E-02
Wimbledon	1.86E-01	8.14E-01	3.93E-02	1.24E-01
Canadian Open	4.59E-01	5.41E-01	5.81E-02	4.92E-02
Cincinnati Open	9.70E-132	1.00E-00	5.20E-123	1.36E-01
US Open	6.12E-01	3.88E-01	8.04E-02	3.66E-02
Pan Pacific Open	1.72E-43	1.00E-00	7.82E-33	1.57E-01
Wuhan Open	1.00E-00	6.87E-67	1.41E-01	1.60E-61
China Open	2.26E-01	7.74E-01	4.67E-02	1.15E-01
WTA Finals	1.17E-01	8.83E-01	9.30E-03	5.03E-02

Players	matri	$\mathbf{x} \mathbf{H}^T$	Total Matches
Serena Williams	5.93E-02	1.44E-01	130
Agnieszka Radwanska	2.39E-02	2.15E-02	126
Victoria Azarenka	7.04E-02	1.47E-02	121
Caroline Wozniacki	3.03E-02	2.43E-02	115
Maria Sharapova	8.38E-03	8.05E-02	112
Simona Halep	1.50E-02	3.12E-02	107
Petra Kvitova	2.39E-02	3.42E-02	99
Angelique Kerber	6.81E-03	3.02E-02	96
Samantha Stosur	4.15E-04	3.76E-02	95
Ana Ivanovic	9.55 E-03	2.60E-02	85
Jelena Jankovic	1.17E-03	2.14E-02	79
Anastasia Pavlyuchenkova	6.91E-03	1.33E-02	79
Carla Suarez Navarro	3.51E-02	5.19E-06	75
Dominika Cibulkova	2.97E-02	1.04E-02	74
Lucie Safarova	0.00E + 00	3.16E-02	69
Elina Svitolina	5.03E-03	1.99E-02	59
Sara Errani	7.99E-04	2.69E-02	58
Karolina Pliskova	9.92E-03	2.36E-02	57
Roberta Vinci	4.14E-02	0.00E + 00	53
Marion Bartoli	1.45E-02	1.68E-02	39

Learned Transpose H Coefficient Matrix for women 45

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison & Algorithm
 - Prediction Task & Result Comparison



Mixture BTL N $Pr(i \text{ beats } j \text{ in tournament } m) = \sum_{k} P(k) \frac{\lambda_{ki}}{\lambda_{ki} + \lambda_{kj}}$ K H I K I

Assignments

EM algorithm $\theta = \{\{P(k)\}, \{\lambda_{ki}\}\}$ Initialization: $P^{(0)}(K) = 1/K$, randomize $\lambda_{ki}^{(0)}$ nonnegative $\ell(\mathcal{D};\theta) = \sum_{(i,j)\in E} b_{ij} \log\left[\sum_{k} P(k)\left(\frac{\lambda_{ki}}{\lambda_{ki} + \lambda_{kj}}\right)\right]$ Hard Assignments $\ell(\mathcal{D},\mathcal{K};\theta) = \sum_{k} \sum_{(i,j)\in E} b_{ij}\delta(k|ij) \log\left[P(k)\left(\frac{\lambda_{ki}}{\lambda_{ki}+\lambda_{kj}}\right)\right]$ **E-STEP** Soft posterior Assignments $p^{(l)}(k|ij) = P(k|ij, \theta^{(l)})$ $\mathbb{E}\{\ell(\mathcal{D},\mathcal{K};\theta)|\mathcal{D},\theta^{(l)}\} = \sum_{k}\sum_{(i,j)\in E} b_{ij}p^{(l)}(k|ij)\log\left[P(k)\left(\frac{\lambda_{ki}}{\lambda_{ki}+\lambda_{kj}}\right)\right]$ **M-STEP** \mathbf{M} s.t. $\sum_{k} P(k) = 1$ $P^{(l+1)}(k) = \frac{\sum_{(i,j)\in E} b_{ij} p^{(l)}(k|ij)}{\sum_{(i,j)\in E} b_{ij}} \qquad \lambda_{ki}^{(l+1)} = \frac{\sum_{j\neq i} \sum_{k} p^{(l)}(k|ij) b_{ij}}{\sum_{i\neq i} \left(\sum_{k} p^{(l)}(k|ij) b_{ij} + \sum_{k} p^{(l)}(k|ji) b_{ji}\right) \frac{1}{\lambda_{ki}^{(l)} + \lambda_{ki}^{(l)}}}$

Mixture BTL solution \rightarrow Unstable

Players	K = 1	K :	= 2	K = 2 Trial 1		<i>K</i> = 2	Trial 2
Novak Djokovic	2.14E-01	7.14E-02	1.33E-01	1.20E-01	2.91E-02	3.40E-05	9.42E-05
Rafael Nadal	1.79E-01	1.00E-01	4.62E-02	1.07E-01	2.25E-02	1.47E-05	1.15E-04
Roger Federer	1.31E-01	1.35E-01	1.33E-02	1.53E-01	1.11E-02	9.29E-03	1.83E-05
Andy Murray	7.79E-02	6.82E-02	4.36E-03	1.43E-01	4.39E-03	2.46E-05	1.52E-05
Tomas Berdych	3.09E-02	5.26E-02	2.85E-04	2.37E-12	6.59E-03	6.51E-19	1.60E-05
David Ferrer	3.72E-02	1.79E-02	4.28E-03	4.74E-02	2.19E-03	1.56E-05	5.89E-06
Stan Wawrinka	4.32E-02	2.49E-02	4.10E-03	6.26E-07	7.21E-93	2.11E-05	6.29E-06
Jo-Wilfried Tsonga	2.98E-02	3.12E-12	1.08E-01	2.03E-01	5.88E-04	9.90E-01	1.04E-06
Richard Gasquet	2.34E-02	1.67E-03	2.97E-03	4.98E-04	1.62E-03	5.30E-08	4.81E-06
Juan Martin del Potro	4.75E-02	8.54E-05	4.85E-02	4.26E-06	8.01E-03	1.90E-05	7.19E-06
Marin Cilic	1.86E-02	3.37E-05	2.35E-03	1.56E-09	2.12E-03	3.49E-16	4.11E-06
Fernando Verdasco	2.24E-02	5.78E-02	8.00E-09	2.75E-17	7.12E-03	6.54E-05	9.72E-07
Kei Nishikori	3.43E-02	5.37E-08	3.58E-02	1.83E-12	8.58E-03	4.18E-23	1.77E-05
Gilles Simon	1.90E-02	7.65E-05	5.16E-03	5.14E-06	1.31E-03	2.47E-10	4.13E-06
Milos Raonic	2.33E-02	2.61E-04	6.07E-03	2.07E-07	2.84E-03	3.99E-08	6.00E-06
Philipp Kohlschreiber	7.12E-03	1.78E-25	3.55E-03	0.00E+00	1.13E-03	7.99E-06	5.0E-324
John Isner	1.84E-02	2.99E-02	1.75E-08	6.93E-02	3.21E-04	1.73E-22	9.47E-06
Feliciano Lopez	1.89E-02	1.35E-02	3.10E-04	3.67E-02	4.93E-04	8.57E-06	1.38E-06
Gael Monfils	1.66E-02	5.38E-10	6.53E-03	6.05E-14	2.85E-03	1.06E-12	4.00E-06
Nicolas Almagro	7.24E-03	1.27E-15	1.33E-03	4.18E-07	2.14E-04	1.04E-14	8.10E-07
Mixture weights	1.00E + 00	4.72E-01	5.28E-01	4.72E-01	5.28E-01	3.32E-01	6.68E-01
Log-likelihoods	-682.13	-65'	7.56	-657	7.56	-656.47	

- Majorization-Minimization Algorithm
- Resolution of Numerical Problems
- Normalization
- Convergence Analysis

- Dataset Information
- Running of Algorithm
- Men Players
- Women Players
- 3. Comparison with Mixture BTL
 - Qualitative Comparison & Algorithm
 - Prediction Task & Result Comparison

S = subset of the collected dataset D

 $|S| \approx 10\% * |non-zero D|$

Training on $D' = \bigtriangledown S$ Learned (WH) matrix In S, If Pr(i beats j in tournament m) > 0.5 i is predicted to beat j in that match Accuracy = # correct predictions |S|

$S_k = all$ the matches played in year k

Female					Male					
Year	BTL-NMF accuracy	Mixture BTL accuracy	$ S_k $	Year	BTL-NMF accuracy	Mixture BTL accuracy	$ S_k $			
2009	0.583	0.583	48	2008	0.634	0.634	93			
2010	0.541	0.656	61	2009	0.632	0.624	117			
2011	0.525	0.537	80	2010	0.676	0.667	108			
2012	0.581	0.558	129	2011	0.716	0.730	141			
2013	0.656	0.606	122	2012	0.673	0.699	153			
2014	0.575	0.592	120	2013	0.642	0.682	148			
2015	0.569	0.612	116	2014	0.662	0.655	151			
2016	0.494	0.530	83	2015	0.740	0.700	150			
2017	0.549	0.549	51	2016	0.692	0.692	117			
2018	0.518	0.428	56	2017	0.740	0.740	73			

Future Plans

1. Larger and longer dataset: Greatest Players of all time

2. Epsilon : Bayesian Interpretation?

Thank you!

For future details, please see the full paper at https://arxiv.org/abs/1903.06500

Datasets and Code: <u>https://github.com/XiaRui1996/btl-nmf</u>

Will be presented at ECML/PKDD next week

